2020年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是( )A.﹣ B.﹣2 C. D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是( )A. B. C. D.3.(3分)下列运算正确的是( )A.m2+2m=3m3 B.m4÷m2=m2 C.m2•m3=m6 D.(m2)3=m54.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是( )A.15° B.20° C.25° D.40°7.(3分)一组数据1,8,8,4,6,4的中位数是( )A.4 B.5 C.6 D.88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为( )A.= B.+80= C.=﹣80 D.=9.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是( )A.2 B. C.3 D.410.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是( )A. B. C. D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为 .12.(3分)若一次函数y=2x+2的图象经过点(3,m),则m= .13.(3分)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是 .14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是 .15.(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为 .16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为 .17.(3分)如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为 .18.(3分)如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到△EF1B;点F2是CF1的中点,连接EF2,BF2,得到△EF2B;点F3是CF2的中点,连接EF3,BF3,得到△EF3B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△EFnB的面积为 .(用含正整数n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣)÷,其中x=﹣3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了 名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为 °;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)23.(12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.七、解答题(满分12分)25.(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=时,请直接写出的值.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B',△EFB'与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.2020年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据简单几何体的主视图的画法,利用“长对正”,从正面看到的图形.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图的画法,画三视图时要注意“长对正、宽相等、高平齐”.3.【分析】运用合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算法则运算即可.【解答】解:A.m2与2m不是同类项,不能合并,所以A错误;B.m4÷m2=m4﹣2=m2,所以B正确;C.m2•m3=m2+3=m5,所以C错误;D.(m2)3=m6,所以D错误;故选:B.【点评】本题主要考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算,熟练掌握运算法则是解答此题的关键.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】根据方差的意义求解可得.【解答】解:∵s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,且平均数相等,∴s甲2<s乙2<s丙2<s丁2,∴这4名同学3次数学成绩最稳定的是甲,故选:A.【点评】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【分析】根据平行线的性质和等腰直角三角形的性质即可得到结论.【解答】解:∵AB∥CD,∴∠3=∠1=20°,∵三角形是等腰直角三角形,∴∠2=45°﹣∠3=25°,故选:C.【点评】本题考查了等腰直角三角形的性质,平行线的性质,熟练掌握平行线的性质是解题的关键.7.【分析】先将数据重新排列,再根据中位数的概念求解可得.【解答】解:一组数据1,4,4,6,8,8的中位数是=5,故选:B.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【解答】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.【分析】根据菱形的对角线互相垂直平分求出OA,OD,AC⊥BD,再利用勾股定理列式求出AD,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,∴OD=BD=×6=3,OA=AC=×8=4,AC⊥BD,由勾股定理得,AD==5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴AD=CD,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=AD=×5=2.5,故选:B.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记性质与定理是解题的关键.10.【分析】根据Rt△ABC中,∠ACB=90°,AC=BC=2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE
2020年辽宁省抚顺市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片