2014年辽宁省阜新市中考数学试卷

2023-10-31 · U1 上传 · 18页 · 291 K

2014年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的.每小题3分,共18分.)1.(3分)﹣2的倒数是( )A.﹣ B. C.﹣2 D.22.(3分)如图的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是( )A. B. C. D.3.(3分)在某校开展的“厉行节约,你我有责”活动中,七年级某班对学生7天内收集饮料瓶的情况统计如下(单位:个):76,90,64,100,84,64,73.则这组数据的众数和中位数分别是( )A.64,100 B.64,76 C.76,64 D.64,844.(3分)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是( )A.(4,﹣2) B.(﹣4,﹣2) C.(﹣2,﹣3) D.(﹣2,﹣4)5.(3分)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是( )A.m<0 B.m>0 C.m>﹣1 D.m<﹣1考生请注意:6、7题为二选一的选做题,即只能选做其中一个题目.多答时只按作答的首题评分,切记!6.(3分)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近( )A.21cm B.22cm C.23cm D.24cm7.对于一次函数y=kx+k﹣1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象经过第一、二、三象限 B.当k>0时,y随x的增大而减小 C.当k<1时,函数图象一定交于y轴的负半轴 D.函数图象一定经过点(﹣1,﹣2)二、填空题(每小题3分,共18分.)8.(3分)函数中,自变量x的取值范围是 .9.(3分)任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是 .10.(3分)如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2= 度.11.(3分)如图,△ABC是⊙O的内接三角形,如果∠AOC=100°,那么∠B= 度.12.(3分)已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是 .考生请注意:13、14题为二选一的选做题,即只能选做其中一个题目.多答时只按作答的首题评分,切记!13.(3分)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是 .14.如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是 .三、解答题(15、16、17、18题每题10分,19、20题每题12分,共64分.)15.(10分)(1)计算:+(2014﹣π)0﹣4cos30°;(2)先化简,再求值:(x+)÷,其中x=+1.16.(10分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为 ;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.17.(10分)“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:分组前学生学习兴趣分组后学生学习兴趣请结合图中信息解答下列问题:(1)求出分组前学生学习兴趣为“高”的所占的百分比为 ;(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.18.(10分)在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x(时),1号队员和其他队员行进的路程分别为y1、y2(千米),并且y1、y2与x的函数关系如图所示:(1)1号队员折返点A的坐标为 ,如果1号队员与其他队员经过t小时相遇,那么点B的坐标为 ;(用含t的代数式表示)(2)求1号队员与其他队员经过几小时相遇?(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?19.(12分)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.20.(12分)如图,抛物线y=﹣x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中﹣3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由. 2014年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的.每小题3分,共18分.)1.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是两个正方形,右边是一个正方形,即可得出答案,故选:C.【点评】本题考查了由三视图判断几何体和简单组合体的三视图,关键是掌握几何体的三视图及空间想象能力.3.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:64,64,73,76,84,90,100,则众数为:64,中位数为:76.故选:B.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.5.【分析】根据反比例函数的性质得m+1<0,然后解不等式即可.【解答】解:根据题意得m+1<0,解得m<﹣1.故选:D.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.考生请注意:6、7题为二选一的选做题,即只能选做其中一个题目.多答时只按作答的首题评分,切记!6.【分析】根据6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,列方程组求解,然后求出11只饭碗摞起来的高度.【解答】解:设多摞一个碗,增高kcm,一个碗的高度是bcm由题意得,,解得:,则11只饭碗摞起来的高度为:×10+=23(cm).更接近23cm.故选:C.【点评】本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.7.【分析】根据一次函数图象与系数的关系对A、B、C进行判断;根据一次函数图象上点的坐标特征对D进行判断.【解答】解:A、当0<k<1时,函数图象经过第一、三、四象限,所以A选项错误;B、当k>0时,y随x的增大而增大,所以B选项错误;C、当k<1时,函数图象一定交于y轴的负半轴,所以C选项正确;D、把x=﹣1代入y=kx+k﹣1得y=﹣k+k﹣1=﹣1,则函数图象一定经过点(﹣1,﹣1),所以D选项错误.故选:C.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题(每小题3分,共18分.)8.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x+4≥0,解得:x≥﹣4.故答案为:x≥﹣4.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.【分析】根据概率的求法,找准两点:①全部情况的总数,②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵投掷一次会出现1,2,3,4,5,6共六种情况,并且出现每种可能都是等可能的,∴朝上的面的数字大于2的概率是:=.故答案为:.【点评】本题主要考查了概率公式:概率=所求情况数与总情况数之比,比较简单.10.【分析】根据垂线的性质和平行线的性质进行解答.【解答】解:如图,∵AB⊥BC,∠1=48°,∴∠3=90°﹣48°=42°.又∵直线a∥b,∴∠2=∠3=42°.故答案为:42.【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”的性质.11.【分析】直接根据圆周角定理求解.【解答】解:∠B=∠AOC=×100°=50°.故答案为:50.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.【分析】根据相似的性质得=,即=,然后利用比例的性质计算即可.【解答】解:∵△ABC∽△DEF,∴=,即=,∴△DEF的周长=12.故答案为:12.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.考生请注意:13、14题为二选一的选做题,即只能选做其中一个题目.多答时只按作答的首题评分,切记!13.【分析】根据AB:AD=2:3,以及折叠的性质表示出三角形ABF的各边长,然后利用等角变换得出∠BAF=∠CFE,继而可得出答案.【解答】解:∵AB:AD=2:3,∴在Rt△ABF中,设AB=2x,AF=AD=BC=3x,则BF=,又∵∠EFC+∠AFB=90°,∠AFB+∠BAF=90°,∴∠BAF=∠CFE,故tan∠EFC=tan∠BAF=.故答案为:.【点评】本题考查了翻折变换及锐角三角函数的定义,解答本题的关键是解直角三角形ABF,另外要得出重要的一点是∠BAF=∠CFE.14.【分析】把A(﹣1,0),B(3,0)代入y=ax2+bx+3求出a,b的值,再代入ax2+bx=0解方程即可.【解答】解:把A(﹣1,0),B(3,0)代入y=ax2+bx+3得,解得,代入ax2+bx=0得,﹣x2+2x=0,解得x1=0,x2=2.故答案为:x1=

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐