2015年辽宁省抚顺市中考数学试卷

2023-10-31 · U1 上传 · 25页 · 424 K

2015年辽宁省抚顺市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)6的绝对值是( )A.6 B.﹣6 C. D.﹣2.(3分)下列图形是中心对称图形的是( )A. B. C. D.3.(3分)下列运算正确的是( )A.3a2•a3=3a6 B.5x4﹣x2=4x2 C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=04.(3分)下列一元二次方程有两个相等实数根的是( )A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=05.(3分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( )A.﹣1<x≤2 B.﹣1≤x<2 C.﹣1<x<2 D.无解6.(3分)图中几何体的左视图是( )A. B. C. D.7.(3分)直线y=x+b(b>0)与直线y=kx(k<0)的交点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8.(3分)学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是( )A.13人 B.12人 C.10元 D.20元9.(3分)如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( )A. B. C. D.10.(3分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( )A.3 B.1.5 C.2 D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为 .12.(3分)分解因式:ab3﹣ab= .13.(3分)已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 .14.(3分)如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 .15.(3分)如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为 .16.(3分)如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 米.17.(3分)如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 .18.(3分)如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形AnBn∁nDn的面积为 .三、解答题(共2小题,第19题10分,第20题12分,满分22分)19.(10分)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.20.(12分)如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .四、解答题(共2小题,第21题12分,第22题12分,满分24分)21.(12分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?22.(12分)电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 .五、解答题(共1小题,满分12分)23.(12分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?六、解答题(共1小题,满分12分)24.(12分)如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.七、解答题(共1小题,满分12)25.(12分)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)八、解答题(共1小题,满分14分)26.(14分)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由. 2015年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,B是中心对称图形.故选:B.【点评】本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.3.【分析】根据整式的各种运算法则逐项分析即可.【解答】解:A、3a2•a3=3a5≠3a6,故A错误;B、5x4﹣x2不是同类项,所以不能合并,故B错误;C、(2a2)3•(﹣ab)=﹣8a7b,计算正确,故C正确;D、2x2÷2x2=1≠0,计算错误,故D错误;故选:C.【点评】本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.4.【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选:A.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.【分析】根据数轴上的表示可得﹣1<x≤2,即可得解.【解答】解:由图可得,这个不等式组的解集为﹣1<x≤2.故选:A.【点评】本题考查了在数轴上表示不等式的解集,表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【分析】找到从左面看所得到的图形即可.【解答】解:从物体左面看,第一层3个正方形,第二层左上角1个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.7.【分析】根据直线方程作出大致函数图象,根据图象可以直接作出选择.【解答】解:直线y=x+b(b>0)与直线y=kx(k<0)的大致图象如图所示:.1>0,b>0,而正比例函数的k<0,故图象的交点A位于第二象限.故选:B.【点评】本题考查了两条直线相交或平行问题.解答该题时,需要掌握一次函数y=kx+b的图象与系数的关系.8.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.9.【分析】根据平行四边形的性质易得S△OEH=S△OFG,则S阴影部分=S△AOB=S▱ABCD,然后根据几何概率的意义求解.【解答】解:∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S阴影部分=S△AOB=S▱ABCD,∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率=S阴影部分:S▱ABCD=.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.也考查了平行四边形的性质.10.【分析】根据旋转后AC′的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC′的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐