2019年中考数学真题分类训练——专题十三:图形的变换一、选择题1.(2019江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有A.3种 B.4种 C.5种 D.6种【答案】D2.(2019金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是A. B.1 C. D.【答案】A3.(2019北京)下列倡导节约的图案中,是轴对称图形的是A. B.C. D.【答案】C4.(2019舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是A.(2,–1) B.(1,–2) C.(–2,1) D.(–2,–1)【答案】A5.(2019海南)如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.21【答案】C6.(2019绍兴)在平面直角坐标系中,抛物线y=(x+5)(x–3)经变换后得到抛物线y=(x+3)(x–5),则这个变换可以是A.向左平移2个单位 B.向右平移2个单位 C.向左平移8个单位 D.向右平移8个单位【答案】B7.(2019河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为A.10 B.6 C.3 D.2【答案】C8.(2019贵阳)如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是A. B. C. D.【答案】D9.(2019福建)下列图形中,一定既是轴对称图形又是中心对称图形的是A.等边三角形 B.直角三角形 C.平行四边形 D.正方形【答案】D10.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】C11.(2019黑龙江)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A. B.C. D.【答案】C12.(2019吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30° B.90° C.120° D.180°【答案】C13.(2019黄冈)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是A.(6,1) B.(–2,1) C.(2,5) D.(2,–3)【答案】D14.(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1) B.(1,0) C.(–1,0) D.(3,0)【答案】C15.(2019湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5) B.(5,1) C.(2,4) D.(4,2)【答案】B16.(2019云南)下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】B17.(2019乐山)下列四个图形中,可以由下图通过平移得到的是A. B. C. D.【答案】D二、填空题18.(2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.【答案】2–219.(2019海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.【答案】20.(2019山西)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.【答案】10–221.(2019杭州)如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于__________.【答案】22.(2019温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为__________分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'–BE为__________分米.【答案】5+5,4.三、解答题23.(2019宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.24.(2019安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段C D.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.25.(2019黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).解:(1)如下图所示,点A1的坐标是(–4,1);(2)如下图所示,点A2的坐标是(1,–4);(3)∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:=.26.(2019绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.解:(1)①AM=AD+DM=40,或AM=AD–DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2–DM2=302–102=800,∴AM=20或(–20舍弃).当∠ADM为直角时,AM2=AD2+DM2=302+102=1000,∴AM=10或(–10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD1.由题意得∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,又∵∠AD2C=135°,∴∠CD2D1=90°,∴CD130,∵∠BAC=∠D2AD1=90°,∴∠BAC–∠CAD2=∠D2AD1–∠CAD2,∴∠BAD2=∠CAD1,∵AB=AC,AD2=AD1,∴△ABD2≌△ACD1,∴BD2=CD1=30.27.(2019金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.解:(1)证明:由旋转性质得:CD=CF,∠DCF=90°.∵△ABC是等腰直角三角形,AD=BD.∴∠ADO=90°,CD=BD=AD,∴∠DCF=∠ADC.在△ADO和△FCO中,,∴△ADO≌△FCO.∴DO=CO.∴BD=CD=2DO.(2)①如图1,分别过点D,F作DN⊥BC于点N,FM⊥BC于点M,连结BF.∴∠DNE=∠EMF=90°.又∵∠NDE=∠MEF,DE=EF,∴△DNE≌△EMF,∴DN=EM.又∵BD=7,∠ABC=45°,∴DN=EM=7,∴BM=BC–ME–EC=5,∴MF=NE=NC–EC=5.∴BF=5.∵点D,G分别是AB,AF的中点,∴DG=BF=.②过点D作DH⊥BC于点H.∵AD=6BD,AB=14,∴BD=2.i)当∠DEG=90°时,有如图2,3两种情况,设CE=t.∵∠DEF=90°,∠DEG=90°,点E在线段AF上.∴BH=DH=2,BE=14–t,HE=BE–BH=12–t.∵△DHE∽△ECA,∴,即,解得t=6±2.∴CE=6+2或CE=6–2.ii)当DG∥BC时,如图4.过点F作FK⊥BC于点K,延长DG交AC于点N,延长AC并截取MN=NA.连结FM.则NC=DH=2,MC=10.设GN=t,则FM=2t,BK=14–2t.∵△DHE∽△EKF,∴KE=DH=2,∴KF=HE=14–2t,∵MC=FK,∴14–2t=10,解得t=2.∵GN=EC=2,GN∥EC,∴四边形GECN是平行四边形,而∠ACB=90°,∴四边形GECN是矩形,∴∠EGN=90°.∴当EC=2时,有∠DGE=90°.iii)当∠EDG=90°时,如图5.过点G,F分别作AC的垂线,交射线AC于点N,M,过点E作EK⊥FM于点K,过点D作GN的垂线,交NG的延长线于点P,则PN=HC=BC–HB=12,设GN=t,则FM=2t,∴PG=PN–GN=12–t.由△DHE∽△EKF可得:FK=2,∴CE=KM=2t–2,∴HE=HC–CE=12–(2t–2)=14–2t,∴EK=HE=14–2t,AM=AC+CM=AC+EK=14+14–2t=28–2t,∴MN=AM=14–t,NC=MN–CM=t,∴PD=t–2,由△GPD∽△DHE可得,即,解得t1=10–,4=10+(舍去)。.CE=2t–2=18–2.所以,CE的长为:6–2,6+2,2或18–2.28.(2019福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°–30°
2019年中考数学真题分类训练——专题十三:图形的变换
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片