2019年中考数学真题分类训练——专题十二:圆

2023-10-31 · U1 上传 · 27页 · 801.5 K

2019年中考数学真题分类训练——专题十二:圆一、选择题1.(2019山西)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为A. B. C.2-π D.4-【答案】A2.(2019衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为A.1 B. C. D.2【答案】C3.(2019黄冈)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为A.25m B.24m C.30m D.60m【答案】A4.(2019湖州)如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是A.60° B.70° C.72° D.144°【答案】C5.(2019金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为A.2 B. C. D.【答案】D6.(2019宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为A.3.5cm B.4cm C.4.5cm D.5cm【答案】B7.(2019成都)如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD的度数为A.30° B.36° C.60° D.72°【答案】B8.(2019衢州)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为A.6dm B.5dm C.4dm D.3dm【答案】B9.(2019甘肃)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=A.54° B.64° C.27° D.37°【答案】C10.(2019湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2【答案】B11.(2019长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是A.2π B.4π C.12π D.24π【答案】C12.(2019温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A.π B.2π C.3π D.6π【答案】C13.(2019重庆)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为A.60° B.50° C.40° D.30°【答案】B14.(2019台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为A.2 B.3 C.4 D.4【答案】A15.(2019福建)如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于A.55° B.70° C.110° D.125°【答案】B16.(2019舟山)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为A.2 B. C. D.【答案】B17.(2019绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为A.π B.π C.2π D.2π【答案】A18.(2019杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=A.2 B.3 C.4 D.5【答案】B二、填空题19.(2019黄冈)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为__________.【答案】4π20.(2019湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是__________.【答案】30°21.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为__________.【答案】22.(2019台州)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为__________.【答案】52°23.(2019杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于__________cm2(结果精确到个位).【答案】11324.(2019温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于__________度.【答案】57°25.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是__________.(结果保留π)【答案】π-126.(2019河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=,则阴影部分的面积为__________.【答案】27.(2019重庆)如图,四边形ABCD是矩形,AB=4,AD=,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是__________.【答案】28.(2019广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为__________寸.【答案】26三、证明题29.(2019福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=,求tan∠BAD的值.证明:(1)∵AB=AC,∴,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°-∠BAC)=90°-∠BAC,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵AB·DH=BD·AE,∴DH=,∴BH=,∴AH=AB-BH=10-,∴tan∠BAD=.30.(2019杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:ODOA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.证明:(1)①如图1,连接OB、OC,则∠BOD∠BOC=∠BAC=60°,∴∠OBC=30°,∴ODOBOA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD,△ABC面积的最大值BC×AD2OBsin60°;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.31.(2019河南)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,则DF的长为__________;②取的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.证明:(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵=sin∠ABD=sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2,∴FD==4-2,故答案为:4-2.②连接OH,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=AB,∴sin∠EAB==,∴∠EAB=30°.故答案为:30°.32.(2019衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE,∠C=30°,求的长.证明:(1)如图,连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)如图,连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD22,∴的长为:.33.(2019滨州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF·AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.证明:(1)如图所示,连接OD,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线.(2)连接AD,则AD⊥BC,则AB=AC,则DB=DC=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠DFC=∠ADC=90°,∴△CFD∽△CDA,∴CD2=CF·AC,即BC2=4CF·AC.(3)连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE·OE·sin∠OEA=×2×OE×cos∠OEA×OEsin∠OEA=,S阴影部分=S扇形OAE-S△OAE=×π×42-=-.34.(2019温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐