精品解析:2019年湖南省永州市中考数学试卷(解析版)

2023-10-31 · U1 上传 · 23页 · 618.5 K

2019年湖南省永州市中考数学试卷一、选择题(每小题4分,本大题共10个小题,每个小题只有一个正确选项,请将正确的选项涂填到答题卡上.每小题4分,共40分)1.﹣2的绝对值等于( )A.﹣ B. C.﹣2 D.2【答案】B【解析】【详解】解:|-2|=2.故选D.2.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是( )A.1.4042×106 B.14.042×105 C.8.94×108 D.0.894×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将8.94亿用科学记数法表示为8.94×108,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】观察图形可知,这块西瓜的三视图是.故选:B.【点睛】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.5.下列运算正确的是( )A.a2+a3=a5 B.(a3)2=a5C.(a•b)2=a2•b2 D.【答案】C【解析】【分析】各项计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a2b2,符合题意;D、原式不能合并,不符合题意,故选:C.【点睛】此题考查了二次根式的加减法,合并同类项,幂的乘方与积的乘方,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.6.现有一组数据:1,4,3,2,4,x.若该组数据的中位数是3,则x的值为( )A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据中位数的定义,数据:1,4,3,2,4,x共有6个数,最中间的数只能为x和4,然后根据它们的中位数为3,即可求出x的值.【详解】数据1,4,3,2,4,x中共有6个数,该组数据的中位数是3,3解得x=3.故选:B.【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.下列说法正确的是( )A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【答案】D【解析】【分析】根据去全等三角形的判定方法得出A不正确;由矩形的判定方法得出B不正确;由补角的定义得出C不正确;由点到直线的距离的定义得出D正确;即可得出结论.【详解】A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.【点睛】本题考查了矩形的判定、全等三角形的判定方法、点到直线的距离以及补角的定义;熟记各个判定方法和定义是解题的关键.8.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )A.40 B.24 C.20 D.15【答案】B【解析】【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BOBD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积6×8=24,故选:B.【点睛】本题考查了菱形判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.9.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )A.甲 B.乙 C.丙 D.丁【答案】A【解析】【分析】设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz; ②设在乙处建总仓库,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz; ③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz; ④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz; 进行比较运费最少的即可.【详解】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选:A.【点睛】本题考查了三元一次方程的应用;设出未知数,求出各个运费是解题的关键.10.若关于x的不等式组有解,则在其解集中,整数的个数不可能是( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组有解,求出m<4,然后分别取m=2,0,-1,得出整数解的个数,即可求解.【详解】解不等式2x﹣6+m<0,得:x,解不等式4x﹣m>0,得:x,∵不等式组有解,∴,解得m<4,如果m=2,则不等式组的解集为m<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<m<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为m,整数解为x=0,1,2,3,有4个;故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内.每小题4分,共32分)11.分解因式:=_____________.【答案】【解析】分析:本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.解:x2+2x+1=(x+1)2.12.方程的解为x=_____.【答案】﹣1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到方程的解.【详解】去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:﹣1【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.使代数式有意义的x的取值范围是.【答案】。【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。14.下表是甲、乙两名同学近五次数学测试(满分均为100分)的成绩统计表:同学第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是_____.【答案】乙.【解析】【分析】根据平均数的计算公式先求出甲和乙同学的平均数,再代入方差公式求出甲和乙同学的方差,然后根据方差的意义即可得出答案.【详解】甲同学的平均数是:(90+88+92+94+91)=91(分),甲同学的方差是:[(90﹣91)2+(88﹣91)2+(92﹣91)2+(94﹣91)2+(91﹣91)2]=4,乙同学的平均数是:(90+91+93+94+92)=92(分),乙同学的方差是:[(90﹣92)2+(91﹣92)2+(93﹣92)2+(94﹣92)2+(92﹣92)2]=2,∵S甲2=4>S乙2=2,方差小的为乙,∴成绩较好且比较稳定的同学是乙.故答案为:乙.【点睛】本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.熟练掌握求方差的公式是本题解题的关键.15.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.【答案】4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.16.如图,已知点F是△ABC的重心,连接BF并延长,交AC于点E,连接CF并延长,交AB于点D,过点F作FG∥BC,交AC于点G.设三角形EFG,四边形FBCG的面积分别为S1,S2,则S1:S2=_____.【答案】.【解析】【分析】由三角形的重心定理得出BF=2EF,得出BE=3EF,由平行线得出△EFG∽△EBC,∴得出,即可得出结果.【详解】∵点F是△ABC的重心,∴BF=2EF,∴BE=3EF,∵FG∥BC,∴△EFG∽△EBC,∴,()2,∴S1:S2;故答案

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐