2009年湖南高考文科数学试题及答案word版

2023-10-27 · U3 上传 · 17页 · 337 K

2009年湖南高考数学试卷文科)参考答案试题解析 一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•湖南)log2的值为( )A.﹣ B. C.﹣ D. 2.(5分)(2009•湖南)抛物线y2=4x的焦点坐标是( )A.(4,0) B.(2,0) C.(1,0) D. 3.(5分)(2009•湖南)设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )A.13 B.35 C.49 D.63 4.(5分)(2009•湖南)如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( )A.++= B.﹣+= C.+﹣= D.﹣﹣= 5.(5分)(2009•湖南)某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( )A.14 B.16 C.20 D.48 6.(5分)(2009•湖南)平行六面体ABCD﹣A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为( )A.3 B.4 C.5 D.67.(5分)(2009•湖南)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A. B. C. D. 8.(5分)(2009•湖南)设函数=f(x)在(﹣∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2﹣|x|.当K=时,函数fK(x)的单调递增区间为( )A.(﹣∞,0) B.(0,+∞) C.(﹣∞,﹣1) D.(1,+∞) 二、填空题(共7小题,每小题5分,满分35分)9.(5分)(2009•湖南)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 . 10.(5分)(2009•湖南)若x>0,则x+的最小值为 . 11.(5分)(2009•湖南)在的展开式中,x的系数为 . 12.(5分)(2009•湖南)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为 . 13.(5分)(2009•湖南)过双曲线C:﹣=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为 .14.(5分)(2009•湖南)在锐角△ABC中,BC=1,B=2A,则的值等于 ,AC的取值范围为 . 15.(5分)(2009•湖南)如图所示,把两块斜边长相等的直角三角板拼在一起,若=x+y,则x= ,y= . 三、解答题(共6小题,满分75分)16.(12分)(2009•湖南)已知向量=(sinθ,cosθ﹣2sinθ),=(1,2).(1)若,求tanθ的值;(2)若,求θ的值. 17.(12分)(2009•湖南)为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的,,,现在3名工人独立地从中任选一个项目参与建设,选择哪个工程是随机的.(I)求他们选择的项目所属类别互不相同的概率;(II)记X为3人中选择的项目属于基础设施工程的人数,求X的分布列及数学期望. 18.(12分)(2009•湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=4,AA1=,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.19.(13分)(2009•湖南)已知函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称.(1)求b的值;(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域. 20.(13分)(2009•湖南)已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q)(1)求椭圆C的方程;(2)设点P是椭圆C的左准线与x轴的交点,过点P的直线l与椭圆C相交于M、N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围. 21.(13分)(2009•湖南)对于数列{un}若存在常数M>0,对任意的n∈N+,恒有|un+1﹣un|+|un﹣un1|+…+|u2﹣u1|≤M则称数列un为B﹣数列(1)首项为1,公比为的等比数列是否为B﹣数列?请说明理由;(2)设sn是数列{xn}的前n项和,给出下列两组判断:A组:①数列{xn}是B﹣数列.②数列{xn}不是B﹣数列.B组③数列{sn}是B﹣数列.④数列{sn}不是B﹣数列请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题判断所给命题的真假,并证明你的结论;(3)若数列{an}是B﹣数列,证明:数列{an2}也是B﹣数列.2009年湖南省高考数学试卷(文科)参考答案与试题解析 一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•湖南)log2的值为( )A.﹣ B. C.﹣ D.【考点】对数的运算性质.菁优网版权所有【专题】计算题;转化思想.【分析】先将转化成,然后根据对数的运算性质进行求解即可.【解答】解:log2=log22=.故选:D【点评】本题主要考查了对数的运算性质,是对数运算中常用的公式,属于基础题. 2.(5分)(2009•湖南)抛物线y2=4x的焦点坐标是( )A.(4,0) B.(2,0) C.(1,0) D.【考点】双曲线的简单性质.菁优网版权所有【分析】先根据抛物线y2=4x的方程求出p的值,进而得到抛物线的焦点坐标.【解答】解:∵2p=4⇒p=2,∴,∴抛物线y2=4x的焦点是(1,0),故选C;【点评】本题主要考查抛物线的简单性质.属基础题. 3.(5分)(2009•湖南)设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )A.13 B.35 C.49 D.63【考点】等差数列的前n项和.菁优网版权所有【专题】等差数列与等比数列.【分析】根据等差数列的性质可知项数之和相等的两项之和相等即a1+a7=a2+a6,求出a1+a7的值,然后利用等差数列的前n项和的公式表示出S7,将a1+a7的值代入即可求出.【解答】解:因为a1+a7=a2+a6=3+11=14,所以故选C.【点评】此题考查学生掌握等差数列的性质及前n项和的公式,是一道基础题. 4.(5分)(2009•湖南)如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( )A.++= B.﹣+= C.+﹣= D.﹣﹣=【考点】向量加减混合运算及其几何意义.菁优网版权所有【分析】模相等、方向相同的向量为相等向量,得出图中的相等向量,再由向量加法法则得选项.【解答】解:由图可知=,==在△DBE中,++=0,即++=0.故选项为A.【点评】考查向量相等的定义及向量加法的三角形法则. 5.(5分)(2009•湖南)某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( )A.14 B.16 C.20 D.48【考点】计数原理的应用.菁优网版权所有【专题】计算题.【分析】本题是一个分类计数问题,由于甲有两个人参加会议需要分两类,含有甲的选法有C21C42种;不含有甲的选法有C43种,根据分类计数原理得到结果.【解答】解:由题意知本题是一个分类计数问题,由于甲有两个人参加会议需要分两类:①含有甲的选法有C21C42种,②不含有甲的选法有C43种,共有C21C42+C43=16(种),故选B.【点评】本题考查分类计数问题,在排列的过程中出现有特殊情况的元素,需要分类来解,不然不能保证发言的3人来自3家不同企业. 6.(5分)(2009•湖南)平行六面体ABCD﹣A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为( )A.3 B.4 C.5 D.6【考点】平面的基本性质及推论.菁优网版权所有【专题】计算题.【分析】根据平行六面体的结构特征和公理2的推论进行判断,即找出与AB和CC1平行或相交的棱.【解答】解:根据两条平行直线、两条相交直线确定一个平面,可得CD、BC、BB1、AA1、C1D1符合条件.故选C.【点评】本题考查了平行六面体的结构特征和公理2的推论的应用,找出与AB和CC1平行或相交的棱即可,考查了空间想象能力. 7.(5分)(2009•湖南)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A. B. C. D.【考点】利用导数研究函数的单调性.菁优网版权所有【专题】数形结合法.【分析】根据函数的单调性与导函数的关系,用排除法进行判断.【解答】解:∵函数y=f(x)的导函数在区间[a,b]上是增函数,∴对任意的a<x′<x″<b,有f′(a)<f′(x′)<f′(x″)<f′(b),也即在a,x',x“,b处它们的斜率是依次增大的.∴A满足上述条件,B存在f′(x′)>f′(x″),C对任意的a<x′<x″<b,f′(x′)=f′(x″),D对任意的x∈[a,b],f′(x)不满足逐项递增的条件,故选A.【点评】掌握函数的单调性与导函数的关系,并会观察图形. 8.(5分)(2009•湖南)设函数=f(x)在(﹣∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2﹣|x|.当K=时,函数fK(x)的单调递增区间为( )A.(﹣∞,0) B.(0,+∞) C.(﹣∞,﹣1) D.(1,+∞)【考点】函数单调性的判断与证明.菁优网版权所有【专题】计算题;压轴题.【分析】先根据题中所给的函数定义求出函数函数fK(x)的解析式,是一个分段函数,再利用指数函数的性质即可选出答案.【解答】解:由f(x)≤得:,即,解得:x≤﹣1或x≥1.∴函数fK(x)=由此可见,函数fK(x)在(﹣∞,﹣1)单调递增,故选C.【点评】本题主要考查了分段函数的性质、函数单调性的判断,属于基础题. 二、填空题(共7小题,每小题5分,满分35分)9.(5分)(2009•湖南)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 12 .【考点】交、并、补集的混合运算.菁优网版权所有【专题】应用题;集合.【分析】设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数.【解答】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.【点评】本题考查了集合的混合运算,属于应用题,关键是运用集合的知识求解实际问题. 10.(5分)(2009•湖南)若x>0,则x+的最小值为 . .【考点】基本不等式.菁优网版权所有【专题】计算题.【分析】由于x和都是正数,x与的积是常数,所以使用基本不等式求式子的最小值,注意检验等号成立条件.【解答】解:∵x>0,∴>0,由基本不等式得:x+≥2,当且仅当x=,即x=时取等号,∴当x=时,x+有最小值为2,故答案为2.【点评】本题考查基本不等式的应用,注意基本不等式使用条件:一正、二定、三相等,即不等式的各项都是正数,和或积中出现定值、等号成立条件具备. 11.(5分)(2009•湖南)在的展开式中,x的系数为 6 .【考点】二项式系数的性质.菁优网版权所有【专题】计算题.【分析】根据题意,的展开式为Tr+1=C4r()r;分析可得,r=2

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐