2010年湖南高考理科数学试题及答案

2023-10-27 · U3 上传 · 18页 · 598 K

2010年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.[来源:Z#xx#k.Com]1.已知集合,,则A.B.C.D.2.下列命题中的假命题是A.,B.,[来源:Z&xx&k.Com]C.,D.,3.极坐标方程和参数方程(t为参数)所表示的图形分别是A.圆、直线B.直线、圆[来源:学+科+网]C.圆、圆D.直线、直线4.在中,,,则等于A.B.C.8D.165.等于A.B.C.D.6.在中,角A,B,C所对的边长分别为a,b,c.若,,则[来源:学_A.a>bB.a<bC.a=bD.a与b的大小关系不能确定7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.158.用表示两数中的最小值.若函数的图像关于直线对称,则的值为A.B.2C.D.1二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.9.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排实验,则第一次试点的加入量可以是g.10.如图1所示,过外一点P作一条直线与交于A,B两点.已知PA=2,点P到的切线长PT=4,则弦AB的长为.11.在区间上随机取一个数,则的概率为.12.图2是求的值的程序框图,则正整数.13.图3中的三个直角三角形是一个体积为20的几何体的三视图,则.14.过抛物线的焦点作斜率为1的直线与该抛物线交于两点,在轴上的正射影分别为.若梯形的面积为,则.15.若数列满足:对任意的,只有有限个正整数使得成立,记这样的的个数为,则得到一个新数列.例如,若数列是,则数列是.已知对任意的,,则,.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数.(Ⅰ)求函数的最大值;(Ⅱ)求函数的零点的集合.17.(本小题满分12分)图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.[来源:学.科.网](Ⅰ)求直方图中的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数的分布列和数学期望.18.(本小题满分12分)如图5所示,在正方体中,E是棱的中点.(Ⅰ)求直线BE的平面所成的角的正弦值;(Ⅱ)在棱上是否存在一点F,使平面?证明你的结论.19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图6).在直线的右侧,考察范围为到点B的距离不超过km的区域;在直线的左侧,考察范围为到A,B两点的距离之和不超过km的区域.(Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图6所示,设线段,是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.20.(本小题满分13分)已知函数对任意的,恒有.(Ⅰ)证明:当时,;(Ⅱ)若对满足题设条件的任意b,c,不等式恒成立,求M的最小值.21.(本小题满分13分)数列中,是函数的极小值点.(Ⅰ)当时,求通项;(Ⅱ)是否存在,使数列是等比数列?若存在,求的取值范围;若不存在,请说明理由.2010年湖南省高考数学试卷理科)参考答案与试题解析 一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•湖南)已知集合M={1,2,3},N={2,3,4},则( )A.M⊆N B.N⊆M C.M∩N={2,3} D.M∪N={1,4}【考点】交集及其运算.菁优网版权所有【专题】计算题.【分析】利用直接法求解,分别求出两个集合的交集与并集,观察两个集合的包含关系即可.【解答】解:M∩N={1,2,3}∩{2,3,4}={2,3}故选C.【点评】本题主要考查了集合的交集与子集的运算,属于容易题. 2.(5分)(2010•湖南)下列命题中是假命题的是( )A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2【考点】四种命题的真假关系.菁优网版权所有【专题】简易逻辑.【分析】本题考查全称命题和特称命题真假的判断,逐一判断即可.【解答】解:B中,x=1时不成立,故选B.答案:B.【点评】本题考查逻辑语言与指数函数、二次函数、对数函数、正切函数的值域,属容易题. 3.(5分)(2010•湖南)极坐标p=cosθ和参数方程(t为参数)所表示的图形分别是( )A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线【考点】参数方程化成普通方程.菁优网版权所有【专题】计算题.【分析】将极坐标方程和参数方程化为一般方程,然后进行选择.【解答】解:∵极坐标p=cosθ,x=pcosθ,y=psinθ,消去θ和p,∴x2+y2=x,x2+y2=x为圆的方程;参数方程(t为参数)消去t得,x+y﹣1=0,为直线的方程,故选D.【点评】此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题. 4.(5分)(2010•湖南)在Rt△ABC中,∠C=90°,AC=4,则等于( )A.﹣16 B.﹣8 C.8 D.16【考点】平面向量数量积的运算;向量的加法及其几何意义.菁优网版权所有【专题】计算题.【分析】本题是一个求向量的数量积的问题,解题的主要依据是直角三角形中的垂直关系和一条边的长度,解题过程中有一个技巧性很强的地方,就是把变化为两个向量的和,再进行数量积的运算.【解答】解:∵∠C=90°,∴=0,∴=()==42=16故选D.【点评】启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质. 5.(5分)(2010•湖南)dx等于( )A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln2【考点】定积分.菁优网版权所有【专题】计算题.【分析】根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.【解答】解:∵(lnx)′=∴=lnx|24=ln4﹣ln2=ln2故选D【点评】本题考查定积分的基本运算,关键是找出被积函数的原函数,本题属于基础题. 6.(5分)(2010•湖南)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则( )A.a>b B.a<bC.a=b D.a与b的大小关系不能确定【考点】余弦定理;不等式的基本性质.菁优网版权所有【专题】计算题;压轴题.【分析】由余弦定理可知c2=a2+b2﹣2abcosC,进而求得a﹣b=,根据>0判断出a>b.【解答】解:∵∠C=120°,c=a,∴由余弦定理可知c2=a2+b2﹣2abcosC,∴a2﹣b2=ab,a﹣b=,∵a>0,b>0,∴a﹣b=,∴a>b故选A【点评】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题. 7.(5分)(2010•湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11 C.12 D.15【考点】排列、组合及简单计数问题.菁优网版权所有【专题】计算题;压轴题.【分析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:一是与信息0110有两个对应位置上的数字相同,二是与信息0110有一个对应位置上的数字相同,三是与信息0110没有一个对应位置上的数字相同的,分别写出结果相加.【解答】解:由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个,故选B.【点评】本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果. 8.(5分)(2010•湖南)用min{a,b}表示a,b两数中的最小值.若函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为( )A.﹣2 B.2 C.﹣1 D.1【考点】函数的图象与图象变化.菁优网版权所有【专题】作图题;压轴题;新定义;数形结合法.【分析】由题设,函数是一个非常规的函数,在同一个坐标系中作出两个函数的图象,及直线x=,观察图象得出结论【解答】解:如图,在同一个坐标系中做出两个函数y=|x|与y=|x+t|的图象,函数f(x)=min{|x|,|x+t|}的图象为两个图象中较低的一个,分析可得其图象关于直线x=﹣对称,要使函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为t=1故应选D.【点评】本题的考点是函数的图象与图象的变化,通过新定义考查学生的创新能力,考查函数的图象,考查考生数形结合的能力,属中档题. 二、填空题(共7小题,每小题5分,满分35分)9.(5分)(2010•湖南)已知一种材料的最佳加入量在110g到210g之间,若用0.618法安排试验,则第一次试点的加入量可以是 171.8或148.2 g.【考点】黄金分割法—0.618法.菁优网版权所有【专题】阅读型.【分析】由题知试验范围为[100,200],区间长度为100,故可利用0.618法:110+(210﹣110)×0.618或210﹣(210﹣110)×0.618选取试点进行计算.【解答】解:根据0.618法,第一次试点加入量为110+(210﹣110)×0.618=171.8或210﹣(210﹣110)×0.618=148.2故答案为:171.8或148.2.【点评】本题考查优先法的0.618法,属容易题,解答的关键是对黄金分割法﹣0.618法的了解. 10.(5分)(2010•湖南)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为 6 .【考点】与圆有关的比例线段.菁优网版权所有【专题】计算题.【分析】首先根据题中圆的切线条件再依据切割线定理求得一个线段的等式,再根据线段的关系可求得AB的长度即可.【解答】解:根据切割线定理PT2=PA•PB,PB===8,∴AB=PB﹣PA=8﹣2=6.故填:6.【点评】本题考查与圆有关的比例线段、平面几何的切割线定理,属容易题. 11.(5分)(2010•湖南)在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为 .【考点】几何概型.菁优网版权所有【专题】计算题.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[﹣1,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵|x|≤1得﹣1≤x≤1,∴|x|≤1的概率为:P(|x|≤1)=.故答案为:.【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 12.(5分)(2010•湖南)如图是求12+22+32+…+1002的值的程序框图,则正整数n= 100 ..【考点】设计程序框图解决实际问题.菁优网版权所有【专题】常规题型.【分析】由已知可知:该

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐