2015年四川省绵阳市中考数学试卷(教师版)一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个选项最符合题目要求)1.(3分)±2是4的( )A.平方根 B.相反数 C.绝对值 D.算术平方根【微点】平方根.【思路】根据平方根的定义解答即可.【解析】解:±2是4的平方根.故选:A.【点拨】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.2.(3分)下列图案中,轴对称图形是( )A. B. C. D.【微点】轴对称图形.【思路】根据轴对称图形的概念对各图形分析判断后即可求解.【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点拨】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.3.(3分)若|2a﹣b+1|=0,则(b﹣a)2015=( )A.﹣1 B.1 C.52015 D.﹣52015【微点】非负数的性质:绝对值;非负数的性质:算术平方根;解二元一次方程组.【思路】利用非负数的性质列出方程组,求出方程组的解得到a与b的值,即可确定出原式的值.【解析】解:∵|2a﹣b+1|=0,∴,解得:,则(b﹣a)2015=(﹣3+2)2015=﹣1.故选:A.【点拨】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.4.(3分)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为( )A.0.242×1010美元 B.0.242×1011美元 C.2.42×1010美元 D.2.42×1011美元【微点】科学记数法—表示较大的数.【思路】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将242亿用科学记数法表示为:2.42×1010.故选:C.【点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118° B.119° C.120° D.121°【微点】三角形内角和定理.【思路】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE∠ABC,∠BCD,∴∠CBE+∠BCD(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点拨】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.6.(3分)要使代数式有意义,则x的( )A.最大值是 B.最小值是 C.最大值是 D.最小值是【微点】二次根式有意义的条件.【思路】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解析】解:∵代数式有意义,∴2﹣3x≥0,解得x.故选:A.【点拨】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.7.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )A.6 B.12 C.20 D.24【微点】全等三角形的判定与性质;勾股定理;平行四边形的判定与性质.【思路】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解析】解:在Rt△BCE中,由勾股定理,得CE5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.【点拨】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.8.(3分)由若干个边长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A.15cm2 B.18cm2 C.21cm2 D.24cm2【微点】几何体的表面积;由三视图判断几何体.【思路】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:综合三视图,我们可以得出,这个几何模型的底层有2+1=3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是3+1=4个.所以表面积为3×6=18cm2.故选:B.【点拨】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.(3分)要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( )A.5000条 B.2500条 C.1750条 D.1250条【微点】用样本估计总体.【思路】首先求出有记号的2条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解析】解:由题意可得:502500(条).故选:B.【点拨】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.10.(3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )A.(11﹣2)米 B.(112)米 C.(11﹣2)米 D.(114)米【微点】解直角三角形的应用.【思路】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.【解析】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴,∴PB11米,∴BC=PB﹣PC=(114)米.故选:D.【点拨】本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.11.(3分)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=( )A.14 B.15 C.16 D.17【微点】规律型:图形的变化类.【思路】分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.【解析】方法一:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.方法二:设s=an2+bn+c,∴,∴,∴s=n2﹣n+5,把s=245代入,∴n2﹣n+5=245,∴n1=﹣15(舍去),n2=16,∴n=16.【点拨】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.12.(3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( )A. B. C. D.【微点】翻折变换(折叠问题);相似三角形的判定与性质.【思路】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解析】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.【点拨】主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:a(a2÷a)﹣a2= 0 .【微点】整式的混合运算.【思路】首先将括号里面利整式的除法运算法则化简,进而利用同底数幂的乘法以及合并同类项法则求出即可.【解析】解:a(a2÷a)﹣a2=a2﹣a2=0.故答案为:0.【点拨】此题主要考查了整式的混合运算,正确掌握相关法则是解题关键.14.(3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 (2,﹣1) .【微点】坐标确定位置.【思路】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解析】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点拨】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.15.(3分)在实数范围内因式分解:x2y﹣3y= y(x)(x) .【微点】实数范围内分解因式.【思路】原式提取y,再利用平方差公式分解即可.【解析】解:原式=y(x2﹣3)=y(x)(x),故答案为:y(x)(x).【点拨】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.16.(3分)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= 9.5° .【微点】平行线的性质.【思路】先根据平行线的性质求出∠AED与∠DEB的度数,再由角平分线的性质求出∠DEF的度数,进而可得出∠GEF的度数,再根据三角形外角的性质即可得出结论.【解析】解:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠DEF119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,内错角相等.17.(3分)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n
2015年四川省绵阳市中考数学试卷(教师版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片