2015年四川省绵阳市中考数学试卷(学生版)

2023-10-31 · U1 上传 · 8页 · 223.5 K

2015年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个选项最符合题目要求)1.(3分)±2是4的( )A.平方根B.相反数C.绝对值D.算术平方根2.(3分)下列图案中,轴对称图形是( )A.B.C.D.3.(3分)若|2a﹣b+1|=0,则(b﹣a)2015=( )A.﹣1B.1C.52015D.﹣520154.(3分)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为( )A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元5.(3分)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°6.(3分)要使代数式有意义,则x的( )A.最大值是B.最小值是C.最大值是D.最小值是7.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )A.6B.12C.20D.24第1页/共8页8.(3分)由若干个边长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A.15cm2B.18cm2C.21cm2D.24cm29.(3分)要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( )A.5000条B.2500条C.1750条D.1250条10.(3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )A.(11﹣2)米B.(112)米C.(11﹣2)米D.(114)米11.(3分)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=( )A.14B.15C.16D.1712.(3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( )第2页/共8页A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:a(a2÷a)﹣a2= .14.(3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 .15.(3分)在实数范围内因式分解:x2y﹣3y= .16.(3分)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .17.(3分)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2= .18.(3分)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为 .第3页/共8页三、解答题(本大题共7小题,共86分,解答时应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:|1|+()﹣2;(2)解方程:1.20.(11分)阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:3239455560546028564151364446405337474546(1)前10株西红柿秧上小西红柿个数的平均数是 ,中位数是 ,众数是 ;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图个数分组28≤x<3636≤x<4444≤x<5252≤x<6060≤x<68频数2 2(3)通过频数分布直方图试分析此大棚中西红柿的长势.第4页/共8页21.(11分)如图,反比例函数y(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.22.(11分)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA;(2)若AB=2,求阴影部分的面积.第5页/共8页23.(11分)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.24.(12分)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线yx﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;第6页/共8页(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.25.(14分)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.第7页/共8页第8页/共8页

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐