2016年山东省东营市中考数学试卷 一、选择题:每小题3分,共30分1.的倒数是( )A.﹣2B.2C.D.2.下列计算正确的是( )A.3a+4b=7abB.(ab3)2=ab6C.(a+2)2=a2+4D.x12÷x6=x63.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( )A.30°B.35°C.40°D.50°4.从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( )A.B.C.D.5.已知不等式组,其解集在数轴上表示正确的是( )A.B.C.D.6.东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是( )A.B.C.D.7.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm8.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)9.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( )A.10B.8C.6或10D.8或1010.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )A.4个B.3个C.2个D.1个 二、填空题:11-14小题,每小题3分,15-18小题,每小题3分11.2016年第一季度,东营市实现生产总值787.68亿元,比上年同期提高了0.9个百分点,787.68亿元用科学记数法表示是 元.12.分解因式:a3﹣16a= .13.某学习小组有8人,在一次数学测验中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的平均数是 .14.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是 .15.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是 .16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为 cm.17.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为 .18.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,随意S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 . 三、解答题:共7小题,共62分19.(1)计算:()﹣1+(π﹣3.14)0﹣2sin60°﹣+|1﹣3|;(2)先化简,再求值:(a+1﹣)÷(),其中a=2+.20.“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.22.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?23.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.25.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标. 2016年山东省东营市中考数学试卷参考答案与试题解析 一、选择题:每小题3分,共30分1.的倒数是( )A.﹣2B.2C.D.【考点】倒数.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A. 2.下列计算正确的是( )A.3a+4b=7abB.(ab3)2=ab6C.(a+2)2=a2+4D.x12÷x6=x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D. 3.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( )A.30°B.35°C.40°D.50°【考点】平行线的性质.【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C. 4.从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个正方形,正方形的左下角是一个小正方形,故选:B. 5.已知不等式组,其解集在数轴上表示正确的是( )A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B. 6.东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是( )A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共设有20道试题,创新能力试题4道,∴他选中创新能力试题的概率==.故选A. 7.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm【考点】圆锥的计算.【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选A. 8.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【考点】位似变换;坐标与图形性质.【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行求解.【解答】解:∵A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标为(﹣3×,6×)或[﹣3×(﹣),6×(﹣)],即A′点的坐标为(﹣1,2)或(1,﹣2).故选D.9.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( )A.10B.8C.6或10D.8或10【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C. 10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )A.4个B.3个C.2个D.1个【考点】相似形综合题.【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥B
2016年山东省东营市中考数学试卷及答案
剩余4页未读,继续阅读
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片