专题54利用拆凑法求不等式的最值【方法点拨】已知的一边是二次齐次可分解,另一边是常数,可考虑换元法;例2、例3中使用了拆凑用以“凑形”,其目的在于一次使用基本不等式,能实现约分或倍数关系.【典型题示例】例1若实数,满足,则的最大值为______.【答案】【解析】因为,,,设,,故原问题可转化为“已知,求的最大值”.又因为,所以的最大值为,当且仅当时取等号.故答案为:.例2已知,则的最大值是________【答案】【分析】本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为均含,故考虑将分母中的拆分与搭配,即,而,所以.点评:本题在拆分时还有一个细节,因为分子的系数相同,所以要想分子分母消去变量,则分母中也要相同,从而在拆分的时候要平均地进行拆分(因为系数也相同).所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的.例3若实数x,y满足x2+2xy-1=0,则x2+y2的最小值是________.【分析】思路1:注意到条件与所求均含有两个变量,从简化问题的角度来思考,消去一个变量,转化为只含有一个变量的函数,从而求它的最小值.本题中可直接由已知解得y,代人所求消去y;也可将直接使用“1”的代换,将所求转化为关于x,y的二次齐次分式.思路2:由所求的结论为x2+y2,想到将条件应用基本不等式构造出x2+y2,然后将x2+y2求解出来即可.【解析一】从结论出发,注意到已知中不含“y2”项,故拆“x2”项的系数设x2+y2=tx2-tx2+y2=tx2-tx2+y2]≥tx21−txy(0
妙解高考数学填选压轴题专题54 利用拆凑法求不等式的最值-妙解高考数学填选压轴题
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片