2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2023-10-27 · U3 上传 · 11页 · 1.8 M

2008年全国统一高考数学试卷理科)(全国卷Ⅱ)A.B.C.D.一、选择题(共12小题,每小题5分,满分60分)11.(5分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=( )底边上,则底边所在直线的斜率为( )A.{0,1}B.{﹣1,0,1}A.3B.2C.D.C.{0,1,2}D.{﹣1,0,1,2}12.(5分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2.(5分)设a,b∈R且b≠0,若复数(a+bi)3是实数,则( )2,则两圆的圆心距等于( )A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2A.1B.C.D.2.(分)函数()的图象关于( )35fx=﹣x A.y轴对称B.直线y=﹣x对称C.坐标原点对称D.直线y=x对称二、填空题(共4小题,每小题5分,满分20分)4.(5分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则( )13.(5分)设向量,若向量与向量共线,则A.a<b<cB.c<a<bC.b<a<cD.b<c<aλ= .ax5.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值( )14.(5分)设曲线y=e在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .15.(5分)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设A.﹣2B.﹣4C.﹣6D.﹣8|FA|>|FB|,则|FA|与|FB|的比值等于 .6.(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男16.(5分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似同学又有女同学的概率为( )地,写出空间中的一个四棱柱为平行六面体的两个充要条件:A.B.C.D.充要条件① ;7.(5分)(1﹣)6(1+)4的展开式中x的系数是( )充要条件② .A.﹣4B.﹣3C.3D.4(写出你认为正确的两个充要条件)8.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则 |MN|的最大值为( )三、解答题(共6小题,满分70分)A.1B.C.D.217.(10分)在△ABC中,cosB=﹣,cosC=.9.(5分)设a>1,则双曲线的离心率e的取值范围是( )(1)求sinA的值(2)设△ABC的面积S△ABC=,求BC的长.A.B.C.(2,5)D.10.(5分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为( )第1页(共11页)18.(12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险21.(12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,0)与AB相交于点D,与椭圆相交于E、F两点.且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金元的概率为10000(Ⅰ)若,求k的值;1﹣0.999.(Ⅱ)求四边形AEBF面积的最大值.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12分)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;22.(12分)设函数.(Ⅱ)求二面角A1﹣DE﹣B的大小.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围. n*20.(12分)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3,n∈N.n(Ⅰ)设bn=Sn﹣3,求数列{bn}的通项公式;*(Ⅱ)若an+1≥an,n∈N,求a的取值范围.第2页(共11页)3.(5分)函数f(x)=﹣x的图象关于( )2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)A.y轴对称B.直线y=﹣x对称C.坐标原点对称D.直线y=x对称参考答案与试题解析 【考点】3M:奇偶函数图象的对称性.菁优网版权所有一、选择题(共12小题,每小题5分,满分60分)【分析】根据函数f(x)的奇偶性即可得到答案.1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=( )【解答】解:∵f(﹣x)=﹣+x=﹣f(x)A.{0,1}B.{﹣1,0,1}∴是奇函数,所以f(x)的图象关于原点对称C.{0,1,2}D.{﹣1,0,1,2}故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.【考点】1E:交集及其运算.菁优网版权所有 【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法4.(5分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则( )则进行计算.A.a<b<cB.c<a<bC.b<a<cD.b<c<a【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},【考点】4M:对数值大小的比较.菁优网版权所有故选:B.【分析】根据函数的单调性,求a的范围,用比较法,比较a、b和a、c的大小.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.【解答】解:因为a=lnx在(0,+∞)上单调递增, 故当x∈(e﹣1,1)时,a∈(﹣1,0),2.(5分)设a,b∈R且b≠0,若复数(a+bi)3是实数,则( )于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.【考点】A5:复数的运算.菁优网版权所有故选:C.【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0即可.【点评】对数值的大小,一般要用对数的性质,比较法,以及0或1的应用,本题是基础题.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以 3a2b﹣b3=0⇒b2=3a2故选:A.5.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值( )【点评】本题考查复数的基本运算,是基础题.A.﹣2B.﹣4C.﹣6D.﹣8 第3页(共11页)【考点】7C:简单线性规划.菁优网版权所有【解答】解:由题意知本题是一个古典概型,3【专题】11:计算题.∵试验发生的所有事件从30名同学中任选3名参加体能测试共有C30种结果,1221满足条件的事件是选到的3名同学中既有男同学又有女同学共有C20C10+C20C10种结果,【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点∴由古典概型公式得到坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y的最小值.,【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.故选:D.【点评】本题考查的是古典概型,可以从它的对立事件来考虑,概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象. 7.(5分)(1﹣)6(1+)4的展开式中x的系数是( )A.﹣4B.﹣3C.3D.4【考点】DA:二项式定理.菁优网版权所有【专题】11:计算题.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关【分析】展开式中x的系数由三部分和组成:的常数项与展开式的x的系数键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目积;的展开式的x的系数与的常数项的积;的的系数与标函数的最优解.的的系数积.利用二项展开式的通项求得各项系数. 6.(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男【解答】解:的展开式的通项为同学又有女同学的概率为( )021∴展开式中常数项为C6,含x的项的系数为C6,含的项的系数为﹣C6A.B.C.D.的展开式的通项为201∴的展开式中的x的系数为C4,常数项为C4,含的项的系数为C4【考点】C6:等可能事件和等可能事件的概率.菁优网版权所有【分析】由题意知本题是一个古典概型,试验发生的所有事件从30名同学中任选3名参加体能测故的展开式中x的系数是试共有3种结果,而满足条件的事件是选到的名同学中既有男同学又有女同学共有C303022011C6C4+C6C4﹣C6C4=6+15﹣24=﹣31221C20C10+C20C10种结果.代入公式得到结果.故选:B.第4页(共11页)【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.所以2<e2<5,即, 故选:B.8.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则【点评】本题的高考考点是解析几何与函数的交汇点,解题时要注意双曲线性质的灵活运用.|MN|的最大值为( ) A.1B.C.D.210.(5分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为( )【考点】H2:正弦函数的图象;H7:余弦函数的图象.菁优网版权所有A.B.C.D.【分析】可令F(x)=|sinx﹣cosx|求其最大值即可.【解答】解:由题意知:f(x)=sinx、g(x)=cosx【考点】LM:异面直线及其所成的角.菁优网版权所有令F(x)=|sinx﹣cosx|=|sin(x﹣)|【专题】11:计算题;35:转化思想.当+,+,即当+时,函数()取到最大值x﹣=kπx=kπa=kπFx【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得故选:B.相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【点评】本题主要考查三角函数的图象和函数解析式的关系.属基础题.【解答】解:建立如图所示坐标系, 令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,9.(5分)设a>1,则双曲线的离心率e的取值范围是( )=,A.B.C.(2,5)D.=(﹣1,﹣1,﹣)∴cos<>=【考点】KC:双曲线的性质.菁优网版权所有【专题】11:计算题.故选:C.【分析】根据题设条件可知:,然后由实数a的取值范围可以求出离心率e的取值范围.【解答】解:,【点评】本题主要考查多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能因为是减函数,所以当a>1时,力,属中档题.第5页(共11页) A.1B.C.D.211.(5分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为( )【考点】LG:球的体积和表面积.菁优网版权所有A.3B.2C.D.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为【考点】IQ:与直线关于点、直线对称的直线方程.菁优网版权所有矩形,【专题】16:压轴题.于是对角线,而,【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项O1O2=OEOE=

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐