2021年四川省南充市中考数学真题试卷 解析版

2023-10-31 · U1 上传 · 29页 · 427.5 K

2021年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.满足x≤3的最大整数x是( )A.1 B.2 C.3 D.42.数轴上表示数m和m+2的点到原点的距离相等,则m为( )A.﹣2 B.2 C.1 D.﹣13.如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF4.据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7.下列说法错误的是( )A.该组数据的中位数是6 B.该组数据的众数是6 C.该组数据的平均数是6 D.该组数据的方差是65.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70 B.10x+5(x+1)=70 C.10(x﹣1)+5x=70 D.10(x+1)+5x=706.下列运算正确的是( )A.•= B.÷= C.+= D.﹣=7.如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为( )A.15° B.22.5° C.30° D.45°8.如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )A. B.2 C.+1 D.2﹣19.已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为( )A.1 B.﹣1 C.2021 D.﹣202110.如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:①顺次连接点A′,B′,C,D的图形是平行四边形;②点C到它关于直线AA′的对称点的距离为48;③A′C﹣B′C的最大值为15;④A′C+B′C的最小值为9.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.如果x2=4,则x= .12.在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是 .13.如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为 .14.若=3,则+= .15.如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为 .16.关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是 .三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤。17.(8分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.18.(8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.19.(8分)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.(1)求考生小红和小强自选项目相同的概率;(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:考生自选项目长跑掷实心球小红959095小强909595①补全条形统计图.②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.20.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.21.(10分)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.(1)求直线AB和反比例函数的解析式;(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.22.(10分)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.(1)求证:AC是⊙O的切线;(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.23.(10分)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)24.(10分)如图,点E在正方形ABCD边AD上,点F是线段AB上的动点(不与点A重合),DF交AC于点G,GH⊥AD于点H,AB=1,DE=.(1)求tan∠ACE;(2)设AF=x,GH=y,试探究y与x的函数关系式(写出x的取值范围);(3)当∠ADF=∠ACE时,判断EG与AC的位置关系并说明理由.25.(12分)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由. 2021年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.满足x≤3的最大整数x是( )A.1 B.2 C.3 D.4【分析】根据不等式x≤3得出选项即可。【解答】解:满足x≤3的最大整数x是3,故选:C.2.数轴上表示数m和m+2的点到原点的距离相等,则m为( )A.﹣2 B.2 C.1 D.﹣1【分析】一个数到原点的距离可以用绝对值表示,例如|x|表示数x表示的点到原点的距离.所以,表示数m和m+2的点到原点的距离相等可以表示为|m|=|m+2|.然后,进行分类讨论,即可求出对应的m的值.【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.3.如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF【分析】证△AOE≌△COF(ASA),得OE=OF,AE=CF,∠CFE=∠AEF,进而得出结论.【解答】解:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,BO=DO,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∠CFE=∠AEF,又∵∠DOC=∠BOA,∴选项A正确,选项B、C、D不正确,故选:A.4.据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7.下列说法错误的是( )A.该组数据的中位数是6 B.该组数据的众数是6 C.该组数据的平均数是6 D.该组数据的方差是6【分析】根据众数、平均数、中位数、方差的定义和公式分别进行计算即可.【解答】解:A、把这些数从小到大排列为:5,5,6,6,6,7,7.则中位数是6,故本选项说法正确,不符合题意;B、∵6出现了3次,出现的次数最多,∴众数是6,故本选项说法正确,不符合题意;C、平均数是(5+5+6+6+6+7+7)÷7=6,故本选项说法正确,不符合题意;D、方差为:×[(5﹣6)2+2×(5﹣6)2+(6﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2]=,故本选项说法错误,符合题意;故选:D.5.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70 B.10x+5(x+1)=70 C.10(x﹣1)+5x=70 D.10(x+1)+5x=70【分析】设每个肉粽x元,则每个素粽(x﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x的一元一次方程,此题得解.【解答】解:设每个肉粽x元,则每个素粽(x﹣1)元,依题意得:10x+5(x﹣1)=70.故选:A.6.下列运算正确的是( )A.•= B.÷= C.+= D.﹣=【分析】根据分式的乘除法和加减法可以计算出各个选项中式子的正确结果,从而可以解答本题.【解答】解:=,故选项A错误;==,故选项B错误;==,故选项C错误;===,故选项D正确;故选:D.7.如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为( )A.15° B.22.5° C.30° D.45°【分析】由垂径定理知,点E是CD的中点,有CD=2ED=2CE,可得DE=OE,则∠DOE=∠ODE=45°,利用圆周角定理即可求解.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴CD=2ED=2CE,∵CD=2OE,∴DE=OE,∵CD⊥AB,∴∠DOE=∠ODE=45°,∴∠BCD=∠DOE=22.5°.故选:B.8.如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )A. B.2 C.+1 D.2﹣1【分析】连结BD,作DH⊥AB,垂足为H,先证明△ABD是等边三角形,再根据SAS证明△ADE≌△BDF,得到△DEF是等边三角形,根据周长求出边长DE=,设AH=x,则HE=2﹣x,DH=x,在Rt△DHE中,根据勾股定理列方程求出x,进而得到AD=2x的值.【解答】解:如图,连结BD,作DH⊥AB,垂足为H,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,∴AD=BD,∠ABD=∠A=∠ADB=60°,∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴DE=DF,∠FDB=∠ADE,∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,∴△DEF是等边三角形,∵△DEF的周长是3,∴DE=,设AH=x,则HE=2﹣x,∵AD=BD,DH⊥AB,∴∠ADH=∠ADB=30°,∴AD=2x,DH=x,在Rt△DHE中,DH²+HE²=DE²,∴(x)²+(2﹣x)²=()²,解得:x=(负值舍去),∴AD=2x=1+,故选:C.9.已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为( )A.1 B.﹣1 C.2021 D.﹣2021

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐