2015年四川省遂宁市中考数学试卷

2023-10-31 · U1 上传 · 19页 · 319 K

2015年四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个符合题目要求)1.(4分)计算:1﹣(﹣)=( )A. B.﹣ C. D.﹣2.(4分)下列运算正确的是( )A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a23.(4分)用3个完全相同的小正方体组成如图所示的几何体,则它的俯视图是( )A. B. C. D.4.(4分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( )A. B. C. D.5.(4分)直线y=2x﹣4与y轴的交点坐标是( )A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4)6.(4分)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是( )A.2 B.3 C.4 D.57.(4分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cm B.4cm C.5cm D.6cm8.(4分)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )A.1cm B.2cm C.3cm D.4cm9.(4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )A.﹣=20 B.﹣=20 C.﹣=20 D.+=2010.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是( )A.2 B.3 C.4 D.5二、填空题(共本大题5小题,每小题4分,满分20分)11.(4分)把96000用科学记数法表示为 .12.(4分)一个n边形的内角和为1080°,则n= .13.(4分)某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是 .14.(4分)在半径为5cm的⊙O中,45°的圆心角所对的弧长为 cm.15.(4分)下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=2a﹣b2,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线y=﹣2x2+4x+3的顶点坐标是(1,1).其中是真命题的有 (只填序号)三、解答题(本大题共3小题,每小题7分,满分21分)16.(7分)计算:﹣13﹣+6sin60°+(π﹣3.14)0+|﹣|17.(7分)解不等式组,并将解集在数轴上表示出来.18.(7分)先化简,再求值:÷﹣,其中m=﹣3.四、解答题(本大题共3小题,每小题9分,满分27分)19.(9分)如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.20.(9分)一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)21.(9分)阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.五、(本大题共2小题,每小题10分,满分20分)22.(10分)交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)23.(10分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.六、(本大题共2小题,第24题10分,第25题12分,满分22分)24.(10分)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM=,sin∠ABD=,求线段BN的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,3)三点.(1)求该抛物线的解析式;(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式. 2015年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个符合题目要求)1.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.2.【分析】根据同底数幂的乘法、幂的乘方和同类项进行计算.【解答】解:A、a•a3=a4,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a3)2=a6,错误;D、a2﹣2a2=﹣a2,正确;故选:D.【点评】此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.3.【分析】根据俯视图是从上边看的到的视图,可得答案.【解答】解:从上边看左边一个小正方形,右边一个小正方形,故B符合题意;故选:B.【点评】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.4.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,从中随机摸出一个,则摸到红球的概率是=.故选:A.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.6.【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:正方形、矩形、菱形、平行四边形是中心对称图形,共4个,故选:C.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【分析】连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.【解答】解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选:B.【点评】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键.8.【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.9.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10.【分析】由抛物线开口向下得到a<0,由对称轴在x=1的右侧得到﹣>1,于是利用不等式的性质得到2a+b>0;由a<0,对称轴在y轴的右侧,a与b异号,得到b>0,抛物线与y轴的交点在x轴的下方得到c<0,于是abc>0;抛物线与x轴有两个交点,所以△=b2﹣4ac>0;由x=1时,y>0,可得a+b+c>0;由x=﹣2时,y<0,可得4a﹣2b+c<0.【解答】解:①∵抛物线开口向下,∴a<0,∵对称轴x=﹣>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,a<0,开口向下;对称轴为直线x=﹣,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c<0,抛物线与y轴的交点在x轴的下方;当△=b2﹣4ac>0,抛物线与x轴有两个交点.二、填空题(共本大题5小题,每小题4分,满分20分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把96000用科学记数法表示为9.6×104.故答案为:9.6×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】直接根据内角和公式(n﹣2)•180°计算即可求解.【解答】解:(n﹣2)•180°=1080°,解得n=8.【点评】主要考查了多边形的内角和公式.多边形内角和公式:(n﹣2)•180°.13.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6、7、7、8、8、9,则中位数为:=7.5.故答案为:7.5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.【分析】根据弧长公式L=进行求解.【解答】解:L==π.故答案为:π.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式L=.15.【分析】根据菱形的判定,三角形的重

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐