2014年四川省遂宁市中考数学试卷

2023-10-31 · U1 上传 · 19页 · 266.5 K

2014年四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1.(4分)在下列各数中,最小的数是( )A.0 B.﹣1 C. D.﹣22.(4分)下列计算错误的是( )A.4÷(﹣2)=﹣2 B.4﹣5=﹣1 C.(﹣2)﹣2=4 D.20140=13.(4分)一个几何体的三视图如图所示,这个几何体是( )A.棱柱 B.正方形 C.圆柱 D.圆锥4.(4分)数据:2,5,4,5,3,4,4的众数与中位数分别是( )A.4,3 B.4,4 C.3,4 D.4,55.(4分)在函数y=中,自变量x的取值范围是( )A.x>1 B.x<1 C.x≠1 D.x=16.(4分)点A(1,﹣2)关于x轴对称的点的坐标是( )A.(1,﹣2) B.(﹣1,2) C.(﹣1,﹣2) D.(1,2)7.(4分)若⊙O1的半径为6,⊙O2与⊙O1外切,圆心距O1O2=10,则⊙O2的半径为( )A.4 B.16 C.8 D.4或168.(4分)不等式组的解集是( )A.x>2 B.x≤3 C.2<x≤3 D.无解9.(4分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=6,则AC长是( )A.3 B.4 C.6 D.510.(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( )A.30° B.60° C.90° D.150°二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)正多边形一个外角的度数是60°,则该正多边形的边数是 .12.(4分)四川省第十二届运动会将于2014年8月16日在我市举行,我市约3810000人民热烈欢迎来自全省的运动健儿.请把数据3810000用科学记数法表示为 .13.(4分)已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是 (结果保留π).14.(4分)我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运动会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲109899乙1089810则应派 运动员参加省运动会比赛.15.(4分)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△AnBn∁n的周长为 .三、计算题(本大题共3个小题,每小题7分,共21分)16.(7分)计算:(﹣2)2﹣+2sin45°+|﹣|17.(7分)解方程:x2+2x﹣3=0.18.(7分)先化简,再求值:(+)÷,其中x=﹣1.四、(本大题共3个小题,每小题9分,共27分)19.(9分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比打折前少花多少钱?20.(9分)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.21.(9分)同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率P1;(3)求向上点数之和不超过5的概率P2.五、(本大题共2个小题,每小题10分,共20分)22.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3= .(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= .(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.23.(10分)如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.六、(本大题共2个小题,第24题10分,第25题12分,共22分)24.(10分)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB•PA.(3)若PD=4,tan∠CDB=,求直径AB的长.25.(12分)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由. 2014年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<﹣1<0,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.【分析】根据有理数的除法、减法法则、以及0次幂和负指数次幂即可作出判断.【解答】解:A、4÷(﹣2)=﹣2,正确,但不符合题意;B、4﹣5=﹣1,正确,但不符合题意;C、(﹣2)﹣2==,错误,符合题意.D、20140=1,正确,但不符合题意;故选:C.【点评】本题主要考查了零指数幂,负指数幂的运算.任何不为零的数的负整数次幂为这个数的正整数次幂的倒数;任何非0数的0次幂等于1.3.【分析】根据三视图确定该几何体是圆柱体.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.4.【分析】根据众数及中位数的定义,求解即可.【解答】解:将数据从小到大排列为:2,3,4,4,4,5,5,∴众数是4,中位数是4.故选:B.【点评】本题考查了众数及中位数的知识.将一组数据从小到大(或从大到小)重新排列后,如果数据个数是奇数,则最中间的那个数是这组数据的中位数;如果数据个数是偶数,则最中间两个数的平均数是这组数据的中位数.5.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点A(1,﹣2)关于x轴对称的点的坐标是(1,2),故选:D.【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.7.【分析】设两圆的半径分别为R和r,且R≥r,圆心距为d.外离:d>R+r;外切:d=R+r;相交:R﹣r<d<R+r;内切:d=R﹣r;内含:d<R﹣r.【解答】解:因两圆外切,可知两圆的半径之和等于圆心距,即R+r=O1O2所以R=0102﹣r=10﹣6=4.故选:A.【点评】本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.8.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>2,解不等式②得:x≤3,∴不等式组的解集为2<x≤3,故选:C.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找到不等式组的解集.9.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×6×2+×AC×2=10,解得AC=4.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点评】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)11.【分析】根据正多边形的每一个外角都相等,多边形的外角和为360°,可得多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:六.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3810000用科学记数法表示为:3.81×106.故答案为:3.81×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵底面圆的半径为4,∴底面周长=8π,∴侧面面积=×8π×5=20π.故答案为:20π.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.14.【分析】先分别计算出甲和乙的平均数,再利用方差公式求出甲和乙的方差,最后根据方差的大小进行判断即可.【解答】解:甲的平均数是:(10+9+8+9+9)=9,乙的平均数是:(10+8+9+8+10)=9,甲的方差是:S2甲=[(10﹣9)2+(9﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2]=0.4;乙的方差是:S2乙=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2]=0.8;∵S2甲<S2乙,∴甲的成绩稳定,∴应派甲运动员参加省运动会比赛.故答案为:甲.【点评】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.【分析】由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△AnBn∁n∽△AB

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐