2014年山东省威海市中考数学试卷

2023-10-31 · U1 上传 · 27页 · 356.5 K

2014年山东省威海市中考数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)若a3=﹣8,则a的绝对值是( )A.2 B.﹣2 C. D.﹣2.(3分)下列运算正确的是( )A.2x2÷x2=2x B.(﹣a2b)3=﹣a6b3 C.3x2+2x2=5x2 D.(x﹣3)3=x3﹣93.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是( )A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+14.(3分)已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是( )A.﹣2 B.0 C.2 D.45.(3分)在某中学举行的演讲比赛中,初一年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差( )选手1号2号3号4号5号平均成绩得分9095■898891A.2 B.6.8 C.34 D.936.(3分)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( )A. B. C. D.7.(3分)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是( )A. B. C. D.8.(3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )A. B. C. D.9.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°10.(3分)方程x2﹣(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( )A.﹣2或3 B.3 C.﹣2 D.﹣3或211.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是( )A.1 B.2 C.3 D.412.(3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为( )A.0 B.﹣3×()2013 C.(2)2014 D.3×()2013二、填空题(共6小题,每小题3分,共18分)13.(3分)据威海市旅游局统计,今年“五一”小长假期间,我市各旅游景点门票收入约2300万元,数据“2300万“用科学记数法表示为 .14.(3分)计算:﹣×= .15.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= .16.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是 .17.(3分)如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为 .18.(3分)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是 .三、解答题(共7小题,共66分)19.(7分)解方程组:.20.(8分)某学校为了解学生体能情况,规定参加测试的每名学生从“立定跳远”,“耐久跑”,“掷实心球”,“引体向上”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”,“耐久跑”两项的概率是多少?(2)据统计,初二三班共12名男生参加了“立定跳远”的测试,他们的成绩如下:9510090829065897475939285①这组数据的众数是 ,中位数是 ;②若将不低于90分的成绩评为优秀,请你估计初二年级180名男生中“立定跳远”成绩为优秀的学生约为多少人.21.(9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?22.(9分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为 ;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为 个.23.(10分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.24.(11分)猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为 .(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数. 2014年山东省威海市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.【分析】运用开立方的方法求解.【解答】解:∵a3=﹣8,∴a=﹣2.∴a的绝对值是2故选:A.【点评】本题主要考查开立方的知识,关键是确定符号.2.【分析】根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同,以及幂的乘方,合并同类项法则求解即可.【解答】解:A、2x2÷x2=2,故A选项错误;B、(﹣a2b)3=﹣a6b3,故B选项错误;C、3x2+2x2=5x2,故C选项正确;D、(x﹣3)3=x3﹣27﹣9x2+27x,故D选项错误.故选:C.【点评】本题考查了单项式除单项式,以及幂的乘方,合并同类项法则,正确记忆法则是关键.3.【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.4.【分析】原式去括号合并后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2=y,即x2﹣y=2,∴原式=x2﹣3xy+3xy﹣y﹣2=x2﹣y﹣2=2﹣2=0.故选:B.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.5.【分析】首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.【解答】解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93(分),所以方差为:[(90﹣91)2+(95﹣91)2+(93﹣91)2+(89﹣91)2+(88﹣91)2]=6.8,故选:B.【点评】本题考查了方差的计算,牢记方差公式是解答本题的关键.6.【分析】主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形.【解答】解:A、此几何体的主视图和俯视图都是“”字形,故A选项不合题意;B、此几何体的主视图和左视图都是,故B选项不合题意;C、此几何体的主视图和左视图都是,故C选项不合题意;D、此几何体的主视图是,俯视图是,左视图是,故D选项符合题意,故选:D.【点评】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.7.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.8.【分析】作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.【解答】解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴D到AB、AC、BC的距离相等,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.【点评】本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.10.【分析】根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2﹣(m+6)+m2=0有两个相等的实数根得出b2﹣4ac=0,求得m的值,由相同的解解决问题.【解答】解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=﹣2,∵方程x2﹣(m+6)x+m2=0有两个相等的实数根,∴△=b2﹣4ac=(m+6)2﹣4m2=﹣3m2+12m+36=0解得m=6或m=﹣2∴m=﹣2.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.【分析】由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐