2021年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣的相反数是( )A.﹣5 B.5 C.﹣ D.【答案】D【解析】【分析】互为相反数的两个数和为零,据此即可解题.【详解】∵()+=0∴的相反数为.故选D.点睛:此题主要考查了求一个数的相反数,关键是明确相反数的概念.2.据光明日报网,中国科学技术大学的潘建伟、陆朝阳等人构建了一台76个光子100个模式的量子计算机“九章”.它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍.也就是说,超级计算机需要一亿年完成的任务,“九章”只需一分钟.其中一百万亿用科学记数法表示为()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:一百万亿=100000000000000=,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若用我们数学课本上采用科学计算器计算sin3618',按键顺序正确的是()A.BC.D.【答案】D【解析】【分析】根据计算器按键顺序计算即可.【详解】解:根据计算器的按键顺序可知,正确的按键顺序为D选项,故选:D.【点睛】本题主要考查用计算器计算三角函数值,熟悉计算器的按键顺序是解题的关键.4.下列运算正确的是()A. B.C. D.【答案】B【解析】【分析】分别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A.,原选项计算错误,不符合题意;B.原选项计算正确,符合题意;C.,原选项计算错误,不符合题意;D.,原选项计算错误,不符合题意;故选:B.【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.5.如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是()A. B. C. D.【答案】A【解析】【分析】根据左视图是从左面看到的图形进而得出答案.【详解】从左面看,易得下面一层有3个正方形,上面一层中间有一个正方形,∴该几何体的左视图是:.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表:时间/小时78910人数69114这些学生睡眠时间的众数、中位数是()A.众数是11,中位数是8.5 B.众数是9,中位数是8.5C.众数是9,中位数是9 D.众数是10,中位数是9【答案】B【解析】【分析】根据众数和中位数的定义,即可求解.【详解】解:睡眠时间为9小时的人数最多,学生睡眠时间的众数是9小时,一共有30个学生,睡眠时间从小到大排序后,第15、16个数据分别是:8,9,即:中位数为8.5.故选B.【点睛】本题主要考查中位数和众数,熟练掌握中位数和众数定义,是解题的关键.7.解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【答案】A【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:x>−3,解不等式②得:x≤-1,∴不等式组的解集为-3解析】【分析】通过列举的方法将所有可能的情况一一列举,进而找出小球上的数字都是奇数的情况即可求出对应概率.【详解】所有可能出现的情况列举如下:;;;;;;共10种情况,符合条件的情况有:;;;共3种情况;小球上的数字都是奇数的概率为,故选:C.【点睛】本题主要考查了简单概率的求解方法,通过列举法列举出等可能的情况是解决本题的关键.9.如图,在平行四边形中,,.连接AC,过点B作,交DC的延长线于点E,连接AE,交BC于点F.若,则四边形ABEC的面积为()A. B. C.6 D.【答案】B【解析】【分析】先证明四边形ABEC为矩形,再求出AC,即可求出四边形ABEC的面积.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵,∴四边形ABEC为平行四边形,∵,∴,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四边形ABEC是矩形,∴∠BAC=90°,∴,∴矩形ABEC的面积为.故选:B【点睛】本题考查了平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟知相关定理,证明四边形ABEC为矩形是解题关键.10.一次函数与反比例函数的图象交于点,点.当时,x的取值范围是()A. B.或C. D.或【答案】D【解析】【分析】先确定一次函数和反比例函数解析式,然后画出图象,再根据图象确定x的取值范围即可.【详解】解:∵两函数图象交于点,点∴,,解得:,k2=2∴,画出函数图象如下图:由函数图象可得的解集为:0<x<2或x<-1.故填D.【点睛】本题主要考查了运用待定系数法求函数解析式以及根据函数图象确定不等式的解集,根据题意确定函数解析式成为解答本题的关键.11.如图,在和中,,,.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分,则下列结论错误的是()A. B. C. D.【答案】C【解析】【分析】根据即可证明,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,故选项A正确;平分,故选项B正确;即,故选项C错误;,故选项D正确;故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.12.如图,在菱形ABCD中,,,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A. B.C. D.【答案】A【解析】【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1,当0≤x≤1时,AQ=2x,AP=x,作PE⊥AB于E,∴,∴,故D选项不正确;如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,作PF⊥BC与F,作QH⊥AB于H,∴,,∴,故B选项不正确;当2<x≤3时,CP=x-2,CQ=2x-4,∴PQ=x-2,作AG⊥CD于G,∴,∴,故C不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算的结果是____________________.【答案】【解析】【分析】根据二次根式的四则运算法则进行运算即可求解.【详解】解:原式,故答案为:.【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.14.分解因式:________________.【答案】【解析】【分析】先提公因式,再利用平方差公式即可分解.【详解】解:.故答案为:【点睛】本题考查了整式的因式分解,因式分解的一般步骤是“一提二看三检查”,熟知提公因式法和乘法公式是解题关键.15.如图,在中,,分别以点A,B为圆心,以大于长为半径画弧,两弧交于点D,E.作直线DE,交BC于点M.分别以点A,C为圆心,以大于长为半径画弧,两弧交于点F,G.作直线FG,交BC于点N.连接AM,AN.若,则____________.【答案】2-180°【解析】【分析】先根据作图可知DE和FG分别垂直平分AB和AC,再利用线段的垂直平分线的性质得到∠B=∠BAM,∠C=∠CAN,即可得到∠MAN的度数.【详解】解:由作图可知,DE和FG分别垂直平分AB和AC,∴MB=MA,NA=NC,∴∠B=∠MAB,∠C=∠NAC,在△ABC中,,∴∠B+∠C=180°−∠BAC=180°−,即∠MAB+∠NAC=180°−,则∠MAN=∠BAC−(∠MAB+∠NAC)=−(180°−)=2-180°.故答案是:2-180°.【点睛】此题主要考查线段的垂直平分线的性质以及三角形内角和定理.解题时注意:线段的垂直平分线上的点到线段的两个端点的距离相等.16.已知点A为直线上一点,过点A作轴,交双曲线于点B.若点A与点B关于y轴对称,则点A的坐标为_____________.【答案】或【解析】【分析】设点A坐标为,则点B的坐标为,将点B坐标代入,解出x的值即可求得A点坐标.【详解】解:∵点A为直线上一点,∴设点A坐标为,则点B的坐标为,∵点B在双曲线上,将代入中得:,解得:,当时,,当时,,∴点A的坐标为或,故答案为:或.【点睛】本题主要考查一次函数与反比例函数综合问题,用到了关于一条直线的两个点的坐标关系,熟知对称点坐标的关系是解决问题的关键.17.如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若,纸片宽,则HE=__________cm.【答案】【解析】【分析】根据题意,证明四边形是平行四边形,运用的正弦和余弦的关系,求出HE.【详解】如图,分别过作,垂足分别为则根据题意,,因为折叠,则四边形ABCD是矩形同理四边形是平行四边形,中,故答案为:.【点睛】本题考查了轴对称图形,平行四边形的性质与判定,锐角三角函数,理解题意作出辅助线,是解题的关键.18.如图,在正方形ABCD中,,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若,则BG的最小值为__________________.【答案】.【解析】【分析】根据SAS证明△DEA≌△AFB,得∠ADE=∠BAF,再证明∠DGA=90°,进一步可得点G在以AD为直径的半圆上,且O,G,B三点共线时BG取得最小值.【详解】解:∵四边形ABCD是正方形,∴∠ABC-∠DAE,AD=AB,∵AE=BF∴△DEA≌△AFB,∴∠DAF+∠BAF=∠DAB=90°,∠ADE+∠DAF=90°∴∠DGA=90°∴点G在以AD为直径的圆上移动,连接OB,OG,如图:∴在Rt△AOB中,∠OAB=90°∴OB=∵∴当且公当O,G,B三点共线时BG取得最小值.∴BC的最小值为:.【点睛】此题主要考查了全等三角形的判定与性质,正方形的性质,三角形三边关系,圆周角定理等相关知识,正确引出辅助线解决问题是解题的关键.三、解答题(本大题共7小题,共66分)19.先化简,然后从,0,1,3中选一个合适的数作为a的值代入求值.【答案】2(a-3),当a