2010年山东省威海市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为( )A.8.0×102 B.8.03×102 C.8.0×106 D.8.03×1062.(3分)如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是( )A.40° B.60° C.70° D.80°3.(3分)计算的结果是( )A.﹣2 B.﹣1 C.2 D.34.(3分)下列运算正确的是( )A.2x+3y=5xy B.a3﹣a2=a C.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣25.(3分)一个圆锥的底面半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为( )A.9cm B.12cm C.15cm D.18cm6.(3分)化简的结果是( )A.﹣a﹣1 B.﹣a+1 C.﹣ab+1 D.﹣ab+b7.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.5 B.6 C.7 D.88.(3分)已知a﹣b=1,则a2﹣b2﹣2b的值为( )A.4 B.3 C.1 D.09.(3分)如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD平分∠ABC,则下列结论错误的是( )A.BC=2BE B.∠A=∠EDA C.BC=2AD D.BD⊥AC10.(3分)如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O,若CD=3,AB=5,则AC的长为( )A. B.4 C. D.11.(3分)如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( )A. B. C. D.12.(3分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为( )A. B. C. D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)函数y=的自变量x的取值范围为 .14.(3分)如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是 度.15.(3分)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与 个砝码C的质量相等.16.(3分)如图,点A,B,C的坐标分别为(2,4),(5,2),(3,﹣1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为 .17.(3分)小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg降至2000kg(全球人均目标碳排放量),则小明家未来两年人均碳排放量平均每年须降低的百分率是 %.18.(3分)从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,将其截成四个相同的等腰梯形(如图①),可以拼成一个平行四边形(如图②).现有一平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .三、解答题(共7小题,满分66分)19.(7分)解不等式组:.20.(7分)某市从今年1月1日起调整居民用天然气价格,每立方米天然气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天然气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格?21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(1)共抽取了 名学生的体育测试成绩进行统计;(2)随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体育成绩的中位数是 ;(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?22.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数和一次函数y=kx+b的表达式;(2)连接OA,OC,求△AOC的面积.23.(10分)如图,在▱ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙O在▱ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程?24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.(1)将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.(2)若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F,试判断∠A1C1C与∠A1BC是否相等,并说明理由.(3)写出问题(2)中与△A1FC相似的三角形.25.(12分)(1)探究新知:①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.求证:△ABM与△ABN的面积相等.②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.(2)结论应用:如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.2010年山东省威海市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.【分析】根据科学记数法的表示方法,将803.27万化为整数,再将其用科学记数法表示即可得到答案.【解答】解:803.27万=8032700,保留两位有效数字为8.0×106.故选:C.【点评】此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE.∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90﹣20=70°.∵CF∥AE,∴∠CAE=∠FCA=70°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.3.【分析】根据零次幂的意义以及有理数的乘方的运算性质即可求解.【解答】解:10﹣()2009×(﹣2)2010=1﹣(﹣2)×()2009×(﹣2)2009=1+2×[×(﹣2)]2009=1+2×(﹣1)2009=1﹣2=﹣1.故选:B.【点评】本题主要考查了零次幂的意义,利用有理数的乘方公式是解决本题的关键.4.【分析】对各项计算后再利用排除法求解.【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选:D.【点评】本题考查面较广,但都是基础知识,掌握好基础对学好数学非常重要.5.【分析】求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长为:2π×6=12π;∴圆锥侧面展开图的弧长为12π,设圆锥的母线长为R,∴=12π,解得R=9cm.故选:A.【点评】用到的知识点为:圆锥的弧长等于底面周长,及弧长公式.6.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:=(﹣)×=﹣a+1.故选:B.【点评】分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.7.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,故选A.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.【分析】先将原式化简,然后将a﹣b=1整体代入求解.【解答】解:∵a﹣b=1,∴a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1.故选:C.【点评】此题考查的是整体代入思想在代数求值中的应用.9.【分析】根据D,E分别是边AC,AB的中点,得出DE是△ABC的中位线,所以DE∥BC且BC=2DE;又BD平分∠ABC,所以∠CDB=∠DBE=∠BDE,所以BE=DE=AE,所以AB=2DE,所以AB=BC,即可得出B、D选项正确.【解答】解:∵D,E分别是边AC,AB的中点,∴DE∥BC且BC=2DE,∵BD平分∠ABC,∴∠CBD=∠DBE=∠BDE,∴BE=DE=AE,∴AB=2DE,BC=2DE=2BE,故A正确;∴AB=BC,∴∠A=∠C=∠EDA,故B正确;C、∵AE=DE,与AD不一定相等,故本选项不一定成立;D、∵AB=BC,点D是AC的中点,∴BD⊥AC,故本选项正确.故选:C.【点评】本题利用三角形的中位线定理、角平分线的性质和平行线的性质推出等角,得到等腰三角形是解题的关键.10.【分析】作辅助线,平移一腰,由等腰梯形的性质和勾股定理解得答案.【解答】解:过点C作CE∥BD,交AB的延长线于点E,∵AB∥CD,∴四边形BECD是平行四边形,∴BE=CD=3,∵AC⊥BD,∴AC⊥CE,∴∠ACE=90°,∵AD=BC,∴AC=BD,∴AC=CE,由勾股定理得,2AC2=64,∴AC=4,故选A.【点评】本题主要考查等腰梯形的性质的应用.11.【分析】根据几何概率的定义,分别求出两圆中2所占的面积,即可求出针头扎在阴影区域内的概率.【解答】解:指针指向(1)中2的概率是,指针指向(2)中2的概率是,指针所指区域内的数字之和为4的概率是×=.故选:B.【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.12.【分析】根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的面积分别为S1,S2…S2010,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=+=×,同理,得:C1A2=××,由正方形的面积公式,得:S1=,S2=×,S3=××,由此,可得Sn=×(1+)2n﹣2,∴S2010
2010年山东省威海市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片