2019年辽宁省丹东市中考数学试卷一、选择题1.的倒数是()A. B. C. D.【答案】B【解析】【分析】直接利用倒数的定义进而得出答案.【详解】∵×()=1,∴的倒数.故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( )A.2.748×102 B.274.8×104 C.2.748×106 D.0.2748×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是()A. B. C. D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是两个小正方形,故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.下面计算正确的是( )A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5 D.x8÷x2=x6【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选D.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.5.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是( )A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧【答案】C【解析】【分析】根据平行线的判定,作一个角等于已知角的方法即可判断.【详解】解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选C.【点睛】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( )A.11 B.12 C.13 D.14【答案】A【解析】【分析】根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4.所以这5个数据分别是x,y,2,4,4,且x<y<4,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+4+4=11.故选A.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是( )A.8 B.9 C.8或9 D.12【答案】B【解析】【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【详解】解:①当等腰三角形的底边为2时,此时关于x的一元二次方程x2−6x+k=0的有两个相等实数根,∴△=36−4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,②当等腰三角形的腰长为2时,此时x=2是方程x2−6x+k=0的其中一根,代入得4−12+k=0,∴k=8,∴x2−6x+8=0求出另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选B.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质.8.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有( )A.2个 B.3个 C.4个 D.5个【答案】A【解析】【分析】①由图象可知a>0,c<0,根据对称轴,得到b<0,即可判断;②由对称轴得,b=﹣2a,然后把x=﹣2代入解析式,整理后即可判断;③根据抛物线的对称性,得x1+x2=2,然后把x=2代入解析式,即可判断;④由点M,N是抛物线与x轴的两个交点,则抛物线的顶点到x轴的距离不小于3,则有,结合②的结论,即可求得a的取值范围;⑤由图像可知,与x轴的两个交点为(-2,0),(4,0),此时y=0,则当y=2时,x1<﹣2<4<x2,即可得到答案.【详解】解:①由图象可知:a>0,c<0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:,故④错误;⑤易知抛物线与x轴另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选A.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.二、填空题(本大题共8小题,每小题3分,共24分)9.分解因式2x3﹣8x2+8x=_____.【答案】2x(x﹣2)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=2x(x2﹣4x+4)=2x(x﹣2)2,故答案为2x(x﹣2)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.函数y=的自变量x的取值范围是_____.【答案】x≤且x≠0【解析】【分析】【详解】根据题意得x≠0且1﹣2x≥0,所以且.故答案为且.11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是_____.【答案】【解析】【分析】先找出无理数的个数,再根据概率公式可得答案.【详解】解:在﹣1,0,,,π中,无理数有,π,共2个,则抽出的数是无理数的概率是.故答案为.【点睛】此题主要考查了概率公式和应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.关于x的不等式组的解集是2<x<4,则a的值为_____.【答案】3【解析】【分析】分别求出不等式组中两个不等式的解集,根据题意得到关于a的方程,解之可得.【详解】解:解不等式2x﹣4>0,得:x>2,解不等式a﹣x>﹣1,得:x<a+1,∵不等式组的解集为2<x<4,∴a+1=4,即a=3,故答案为3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.【答案】3【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为3.【点睛】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=_____.【答案】2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论.【详解】解:连接OC,∵点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=×6=3,∵BC:CA=1:2,∴S△OBC=3×=1,∵双曲线y=(x>0)经过点C,∴S△OBC=|k|=1,∴|k|=2,∵双曲线y=(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.15.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为_____.【答案】y=﹣2x+8【解析】【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=﹣x+4,由于直线OB的解析式为y=x,解方程组得到P(,),由待定系数法即可得到结论.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P(,),设直线AP的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为y=﹣2x+8,故答案为y=﹣2x+8.【点睛】本题考查了正方形的性质,轴对称﹣最短路线问题,待定系数法求一次函数的解析式,正确的找出点P的位置是解题的关键.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B20
精品解析:辽宁省丹东市2019年中考数学试题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片