绝密*启用前徐州市2010年初中毕业、升学考试数学姓名考试证号1.本试卷满分120分,考试时间为120分钟.2.答题前请将自己的姓名、考试证号用0.5毫米黑色签字笔写在本试卷和答题卡上.3.考生答题全部答在答题卡上,答在本试卷上无效.考试结束,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共有8小题,每小题2分,满分16分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2010江苏徐州,1,2分)-3的绝对值是()A.3 B.-3 C. D.-2.(2010江苏徐州,2,2分)5月31日,参观上海世博会的游客约为505000人,505000用科学记数法表示为() A.505×103B.5.05×103 C.5.05×104 D.5.05×1053.(2010江苏徐州,3,2分)下列计算正确的是()A. B.4.(2010江苏徐州,4,2分)下列四个图案中,是轴对称图形,但不是中心对称图形的是() A.B.C.D.5.(2010江苏徐州,5,2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170 B.400 C.1万 D.3万6.(2010江苏徐州,6,2分)一个几何体的三视图如图所示,则此几何体是()A.棱柱 B.正方体 C.圆柱 D.圆锥7.(2010江苏徐州,7,2分)如图,在64方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8.(2010江苏徐州,8,2分)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位 B.向下平移4个单位 C.向左平移4个单位 D.向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡的相应位置上)9.(2010江苏徐州,9,3分)写出1个比-1小的实数▲.10.(2010江苏徐州,10,3分)计算(a-3)2的结果为▲.11.(2010江苏徐州,11,3分)若=36°,则∠的余角为▲.度.12.(2010江苏徐州,12,3分)若正多边形的一个外角是45°,则该正多边形的边数是▲.13.(2010江苏徐州,13,3分)函数中自变量x的取值范围是▲.14.(2010江苏徐州,14,3分)不等式组的解集是▲.15.(2010江苏广州,15,3分)一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)P(4).(填“﹥”、“=”、或“<”)16.(2010江苏徐州,16,3分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为▲cm.17.(2010江苏徐州,16,3分)如图,扇形的半径为6,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为▲.18.(2010江苏徐州,16,3分)用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多▲枚棋子.三、解答题(本大题共10小题,满分74分,轻在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏徐州,19,6分)计算:(1);(2).20.(2010江苏徐州,20,6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套;(2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.21.(2010江苏徐州,21,6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(2010江苏徐州,22,6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(2010江苏徐州,23,8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.24.(2010江苏徐州,24,8分)图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.25.(2010江苏徐州,25,8分)如如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).26.(2010江苏徐州,26,8分)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA—AD—DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD=_____cm,梯形ABCD的面积_____cm2;(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2.27.(2010江苏徐州,27,8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=_____cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.28.(2010江苏徐州,28,10分)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为_______,点C的坐标为_______;(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?1.【分析】一个数在数轴上对应的点到原点的距离是这个数的绝对值,所以一个数的绝对值是正数或零.【答案】A 【涉及知识点】绝对值的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.2.【分析】把一个较大的数写成a×10n(a是一个只有一位整数的数,n为正整数)的形式,这种记数方法即为科学计数法.在用科学计数法表示的数中,10的指数比原来的整数位少1,所以505000=5.05×105.【答案】D 【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生用科学记数法表示大数的能力,考查知识点单一,有利于提高本题的信度.3.【分析】A中两项不是同类项,不能合并;B中结果应为8a2;C中“同底数幂相除,底数不变,指数相减”;D中“幂的乘方,底数不变,指数相乘”,结果应为a6.【答案】C 【涉及知识点】整式的运算【点评】本题属于基础题,主要考查整式的运算法则,整式的运算法则较多,如整式的加法法则、整式的乘法法则、幂的有关运算法则,注意不要将这些运算法则混淆.4.【分析】A、D都是轴对称图形,其中A不是中心对称图形,D是中心对称图形.【答案】A 【涉及知识点】轴对称图形和中心对称图形的概念.【点评】本题考查了轴对称图形和中心对称图形的概念,要理解它们的区别:沿某条直线对折后,直线两旁的部分能够完全重合的图形是轴对称图形;绕某个点旋转180°后,能与自身重合的图形是中心对称图形.5.【分析】要考察对象的全体是总体,故“170万人的出行情况”是总体;组成总体的每一个考察对象叫做个体,故“每户家庭的出行情况”是个体;从总体中抽取的部分个体是样本,故“1万户家庭的出行情况”是样本;样本中包含的个体的数目叫做样本容量,故1万是样本容量.【答案】C 【涉及知识点】抽样调查【点评】本题主要考察抽样调查的相关概念,解题时要注意总体、个体、样本之间的联系和区别.6.【分析】综合三视图可知该几何体时一个圆柱.【答案】C 【涉及知识点】三视图【点评】本题主要三视图的知识,在求解此类试题时,只有将俯视图、主视图和左视图综合起来,才能得出正确的结论.7.【分析】如图,连接两组对应点,作对应点连线的垂直平分线,则交点N即为所求.【答案】B 【涉及知识点】旋转的性质【点评】确定旋转中心的关键是确定两个图形上两组对应点的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心.因此我们可以通过作两组旋转对应点所连线段的垂直平分线的交点来确定旋转中心.8.【分析】因为二次函数y=(x-2009)(x-2008)的图象与x轴交于点(2008,0)和(2009,0),这两点间的距离为1,而二次函数y=(x-2009)(x-2008)的图象可由二次函数y=(x-2009)(x-2008)+4的图象向下平移4个单位得到,故答案为B.【答案】B 【涉及知识点】二次函数,平移【点评】本题主要考查二次函数与x轴交点坐标的求法,以及二次函数图象的平移与函数表达式的关系:对于抛物线,若将其向左平移m(m>0)个单位,则在括号内添加上“+m”,反之,向右平移m(m>0)个单位,则在括号内添加上“-m”;对于抛物线,若将其向上平移n(n>0)个单位,则在括号外添加上“+n”,反之,向下平移n(n>0)个单位,则在括号外添加上“-n”.二、填空题9.【答案】答案不唯一. 【涉及知识点】实数【点评】本题主要考查实数大小的比较,比较容易得分.10.【分析】完全平方公式,应用公式可得.【答案】 【涉及知识点】完全平方公式【点评】本题主要考查完全公式的应用,题目比较基础,容易得分,解题时注意完全平方公式和平方差公式的区别.11.【分析】∠的余角为90°-36°=54°.【答案】54【涉及知识点】余角【点评】如果两个角的和为90°,那么这两个角互余;如果两个角的和为180°,那么这两个角互补.互余、互补是几何的基础概念,有时单独考查,有时与其它知识一起考查.12.【分析】正多边形的外角和等于360°,所以该正多边形的边数是360°÷45°=8.【答案】8【涉及知识点】多边形的外角和【点评】正多边形的外角和等于360°,正多边形的内角和等于(n-2)180°,熟记这两条性质是解决多边形内角、外角问题的关键.13.【分析】由于分式的分母不为0,即x-1≠0,即x≠1.【答案】x≠1【涉及知识点】分式有意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方
2010年江苏省徐州市中考数学试题(含答案)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片