徐州市2020年初中学业水平考试数学试题注意事项1.本试卷共6页,满分140分,考试时间120分钟.2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写在本卷和答题卡的指定位置.3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,将本卷和答题卡一并交回.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.3的相反数是().A. B.3 C. D.2.下列垃圾分类标识图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.三角形的两边长分别为和,则第三边长可能为()A. B. C. D.4.在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是()A. B. C. D.5.小红连续天的体温数据如下(单位相):,,,,.关于这组数据下列说法正确的是()A.中位数 B.众数是 C.平均数是 D.极差是6.下列计算正确的是()A. B. C. D.7.如图,是的弦,点在过点的切线上,,交于点.若,则的度数等于()A. B. C. D.8.如图,在平面直角坐标系中,函数与的图像交于点,则代数式的值为()A. B. C. D.二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.7的平方根是_____.10.分解因式:__________.11.式子在实数范围内有意义,则x的取值范围是_______.12.原子很小,个氧原子的直径大约为,将用科学记数法表示为_______.13.如图,在中,,、、分别为、、的中点,若,则_______.14.如图,在中,,,.若以所在直线为轴,把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于_______.15.方程的解为_______.16.如图,、、、为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为_______.17.如图,,在上截取.过点作,交于点,以点为圆心,为半径画弧,交于点;过点作,交于点,以点为圆心,为半径画弧,交于点;按此规律,所得线段的长等于_______.18.在中,若,,则的面积的最大值为______.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1);(2)20.(1)解方程:;(2)解不等式组:21.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到组(体温检测)、组(便民代购)、组(环境消杀).(1)小红爸爸被分到组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)22.某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如下尚不完整的统计图表:市民每天的阅读时间统计表类别阅读时间频数市民每天的类别阅读时间扇形统计图根据以上信息解答下列问题:(1)该调查的样本容量为______,______;(2)在扇形统计图中,“”对应扇形的圆心角等于______;(3)将每天阅读时间不低于市民称为“阅读爱好者”.若该市约有万人,请估计该市能称为“阅读爱好者”的市民有多少万人.23.如图,,,.,与交于点.(1)求证:;(2)求的度数.24.本地某快递公司规定:寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地起步价(元)超过千克的部分(元千克)上海北京实际收费目的地质量费用(元)上海北京求,的值.25.小红和爸爸绕着小区广场锻炼如图在矩形广场边的中点处有一座雕塑.在某一时刻,小红到达点处,爸爸到达点处,此时雕塑在小红的南偏东方向,爸爸在小红的北偏东方向,若小红到雕塑的距离,求小红与爸爸的距离.(结果精确到,参考数据:,,)26.如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.(1)求一次函数和反比例函数的表达式;(2)求面积的最大值.27.我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.(1)在图①中,若,则长为_____;(2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;(3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.28.如图,在平面直角坐标系中,函数的图像交轴于点、,交轴于点,它的对称轴交轴于点.过点作轴交抛物线于点,连接并延长交轴于点,交抛物线于点.直线交于点,交抛物线于点,连接、.备用图(1)点的坐标为:______;(2)当是直角三角形时,求的值;(3)与有怎样的位置关系?请说明理由.徐州市2020年初中学业水平考试数学试题注意事项1.本试卷共6页,满分140分,考试时间120分钟.2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写在本卷和答题卡的指定位置.3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,将本卷和答题卡一并交回.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.3的相反数是().A. B.3 C. D.【答案】A【解析】【分析】相反数的定义:只有符号不同的两个数互为相反数,根据相反数的定义即可得.【详解】3的相反数是-3故选:A.【点睛】本题考查了相反数的定义,熟记定义是解题关键.2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,也是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:B.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.3.三角形的两边长分别为和,则第三边长可能为()A. B. C. D.【答案】C【解析】【分析】根据三角形的三边关系判断即可.【详解】6-3=3<第三边长<6+3=9,只有6cm满足题意,故选C.【点睛】本题考查三角形的三边范围计算,关键牢记三边关系.4.在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是()A. B. C. D.【答案】A【解析】【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值即可得答案.【详解】解:设袋子中红球有x个,根据题意,得:解得答:袋子中红球有5个.故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.小红连续天的体温数据如下(单位相):,,,,.关于这组数据下列说法正确的是()A.中位数是 B.众数是 C.平均数是 D.极差是【答案】B【解析】【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.【详解】A.将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3,故此选项错误B.36.2出现了两次,故众数是36.2,故此选项正确;C.平均数为(),故此选项错误;D.极差为36.6-36.2=0.4(),故此选项错误,故选:B.【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.6.下列计算正确是()A. B. C. D.【答案】D【解析】【分析】由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确;故选:D.【点睛】本题考查了同底数幂除法,积的乘方,完全平方公式,合并同类项,解题的关键是熟练掌握运算法则进行解题.7.如图,是的弦,点在过点的切线上,,交于点.若,则的度数等于()A. B. C. D.【答案】B【解析】【分析】根据题意可求出∠APO、∠A的度数,进一步可得∠ABO度数,从而推出答案.【详解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵点C在过点B的切线上,∴∠OBC=90°,∴∠ABC=∠OBC−∠ABO=90°−20°=70°,故答案为:B.【点睛】本题考查的是圆切线的运用,熟练掌握运算方法是关键.8.如图,在平面直角坐标系中,函数与的图像交于点,则代数式的值为()A. B. C. D.【答案】C【解析】【分析】把P(,)代入两解析式得出和的值,整体代入即可求解C【详解】∵函数与的图像交于点P(,),∴,,即,,∴.故选:C.【点睛】本题考查了代数式的求值以及反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式.二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.7的平方根是_____.【答案】【解析】∵,∴7的平方根是,故答案为.10.分解因式:__________.【答案】【解析】【分析】直接利用平方差公式进行因式分解即可.【详解】故答案为:.【点睛】本题考查了利用平方差公式进行因式分解,熟记公式是解题关键.11.式子在实数范围内有意义,则x的取值范围是_______.【答案】x≥3【解析】【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.12.原子很小,个氧原子的直径大约为,将用科学记数法表示为_______.【答案】1.48×10−10【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=1.48×10−10.故答案为:1.48×10−10.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如图,在中,,、、分别为、、的中点,若,则_______.【答案】5【解析】【分析】根据直角三角形斜边中线等于斜边一半可得AC的长度,再根据题意判断DE为中位线,根据中位线的性质即可求出DE的长度.【详解】∵在中,,、、分别为、、的中点,,则根据直角三角形斜边中线等于斜边一半可得AC=10.根据题意判断DE为中位线,根据三角形中位线的性质,得DE∥AC且DE=AC,可得DE=5.故答案为DE=5【点睛】本题掌握直角三角形斜边中线等于斜边一半及中位线的性质是解答本题的关键.14.如图,在中,,,.若以所在直线为轴,把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于_______.【答案】【解析】【分析】运用公式(其中勾股定理求解得到的母线长为5)求解.【
2020年江苏省徐州市中考数学试卷(含答案)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片