2018年广东省广州市中考数学试卷及答案

2023-10-31 · U1 上传 · 28页 · 367.5 K

2018年广东省广州市中考数学试卷 一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,,中,无理数的是( )A. B.1 C. D.02.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )A.1条 B.3条 C.5条 D.无数条3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A. B. C. D.4.(3分)下列计算正确的是( )A.(a+b)2=a2+b2 B.a2+2a2=3a4 C.x2y÷=x2(y≠0) D.(﹣2x2)3=﹣8x65.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠46.(3分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A. B. C. D.7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A.40° B.50° C.70° D.80°8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A. B.C. D.9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是( )A. B. C. D.10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )A.504m2 B.m2 C.m2 D.1009m2 二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知二次函数y=x2,当x>0时,y随x的增大而 (填“增大”或“减小”).12.(3分)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .13.(3分)方程=的解是 .14.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 .15.(3分)如图,数轴上点A表示的数为a,化简:a+= .16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有 .(填写所有正确结论的序号) 三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是 ,众数是 ;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度. 2018年广东省广州市中考数学试卷参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,,中,无理数的是( )A. B.1 C. D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式. 2.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )A.1条 B.3条 C.5条 D.无数条【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:五角星的对称轴共有5条,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义. 3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A. B. C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 4.(3分)下列计算正确的是( )A.(a+b)2=a2+b2 B.a2+2a2=3a4 C.x2y÷=x2(y≠0) D.(﹣2x2)3=﹣8x6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3a2,故B错误;(C)原式=x2y2,故C错误;故选:D.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 5.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 6.(3分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A. B. C. D.【分析】直接根据题意画出树状图,再利用概率公式求出答案.【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键. 7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A.40° B.50° C.70° D.80°【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【解答】解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点评】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°. 8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A. B.C. D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是( )A. B. C. D.【分析】先由一次函数的图象确定a、b的正负,再根据a﹣b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【解答】解:当y=ax+b经过第一、二、三象限时,a>0、b>0,由直线和x轴的交点知:﹣>﹣1,即b<a,∴a﹣b>0,所以双曲线在第一、三象限.故选项B不成立,选项A正确.当y=ax+b经过第二、一、四象限时,a<0,b>0,此时a﹣b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.【点评】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便. 10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )A.504m2 B.m2 C.m2 D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐