2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算()﹣1所得结果是( )A.﹣2 B. C. D.22.a2=1,b是2的相反数,则a+b的值为( )A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.一组数据5,7,8,10,12,12,44的众数是( )A.10 B.12 C.14 D.444.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A. B. C. D.5.下列说法中正确的是( )A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为( )A.2cm B.4cm C.6cm D.8cm7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为( )A. B. C. D.8.若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是( )A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.无法确定9.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为( )21世纪教育网版权所有A.π+1 B.π+2 C.2π+2 D.4π+110.已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( )A.1个 B.2个 C.3个 D.4个11.已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是( )A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y212.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A. B. C. D. 二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.化简:÷(﹣1)•a= .15.某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为 cm.16.若关于x、y的二元一次方程组的解是,则ab的值为 .17.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB= 度.18.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是 .19.如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为 .20.如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.www.21-cn-jy.com下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC=2S△ABE.其中正确的结论是 .(填写所有正确结论的序号) 三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.25.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.www-2-1-cnjy-com(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值. 2017年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算()﹣1所得结果是( )A.﹣2 B. C. D.2【考点】6F:负整数指数幂.【分析】根据负整数指数幂的运算法则计算即可.【解答】解:()﹣1==2,故选:D. 2.a2=1,b是2的相反数,则a+b的值为( )A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【考点】1E:有理数的乘方;14:相反数;19:有理数的加法.【分析】分别求出ab的值,分为两种情况:①当a=﹣1,b=﹣2时,②当a=1,b=﹣2时,分别代入求出即可.21·cn·jy·com【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选C. 3.一组数据5,7,8,10,12,12,44的众数是( )A.10 B.12 C.14 D.44【考点】W5:众数.【分析】根据众数的定义即可得.【解答】解:这组数据中12出现了2次,次数最多,∴众数为12,故选:B. 4.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A. B. C. D.【考点】I6:几何体的展开图.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.21教育网所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C. 5.下列说法中正确的是( )A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【考点】74:最简二次根式;24:立方根;E4:函数自变量的取值范围;P5:关于x轴、y轴对称的点的坐标.2·1·c·n·j·y【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D符合题意;故选:D. 6.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为( )A.2cm B.4cm C.6cm D.8cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;21·世纪*教育网若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;2-1-c-n-j-y故选A. 7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为( )A. B. C. D.【考点】X4:概率公式.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故选A. 8.若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是( )A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.无法确定【考点】AA:根的判别式;C3:不等式的解集.【分析】先解不等式,再利用不等式的解集得到1+=1,则a=0,然后计算判别式的值,最后根据判别式的意义判断方程根的情况.【解答】解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为△=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选C. 9.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为( )A.π+1 B.π+2 C.2π+2 D.4π+1【考点】MO:扇形面积的计算;KH:等腰三角形的性质;M5:圆周角定理.【分析】连接DO、AD,求出圆的半径,求出∠BOD和∠DOA的度数,再分别求出△BOD和扇形DOA的面积即可.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD+S扇形DOA=+=π+2.故选B. 10.已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( )A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】根据不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数逐个判断即可
2017年内蒙古包头市中考数学试卷(含解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片