2017年山东省青岛市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 33页 · 728.6 K

2017年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是( )A.8 B.﹣8 C. D.﹣2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是4.(3分)计算6m6÷(﹣2m2)3的结果为( )A.﹣m B.﹣1 C. D.﹣5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为( )A.(﹣4,2) B.(﹣2,4) C.(4,﹣2) D.(2,﹣4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )A.100° B.110° C.115° D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为( )A. B. C. D.8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为( )A.2 B.4 C.8 D.不确定 二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为 .10.(3分)计算:(+)×= .11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是 .12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为 .13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为 度.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 . 三、解答题(本大题共4分)15.(4分)已知:四边形ABCD.求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等. 三、解答题(本大题共9小题,共74分)16.(8分)(1)解不等式组:(2)化简:(﹣a)÷.17.(6分)小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜,这个游戏对双方公平吗?请说明理由.18.(6分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是 度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.19.(6分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)20.(8分)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是 (填l1或l2);甲的速度是 km/h,乙的速度是 km/h;(2)甲出发多少小时两人恰好相距5km?21.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.22.(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?23.(10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x﹣1|<2的解集(1)探究|x﹣1|的几何意义如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,有绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.(2)求方程|x﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.(3)求不等式|x﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究的几何意义(1)探究的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO===,因此,的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.(2)探究的几何意义如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O=,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=,因此的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.(3)探究的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)的几何意义可以理解为: .拓展应用:(1)+的几何意义可以理解为:点A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F (填写坐标)的距离之和.(2)+的最小值为 (直接写出结果)24.(12分)已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,FQ,当点Q停止运动时,△EFQ也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由. 2017年山东省青岛市中考数学试卷参考答案与试题解析 一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•青岛)﹣的相反数是( )A.8 B.﹣8 C. D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 2.(3分)(2017•青岛)下列四个图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.(3分)(2017•青岛)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为.故选C.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数. 4.(3分)(2017•青岛)计算6m6÷(﹣2m2)3的结果为( )A.﹣m B.﹣1 C. D.﹣【分析】根据整式的除法法则即可求出答案.【解答】解:原式=6m6÷(﹣8m6)=﹣故选(D)【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型. 5.(3分)(2017•青岛)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为( )A.(﹣4,2) B.(﹣2,4) C.(4,﹣2) D.(2,﹣4)【分析】利用网格特征和旋转的性质,分别作出A、B、C的对应点A1、B1、C1,于是得到结论.【解答】解:如图,点B1的坐标为(﹣2,4),故选B.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等. 6.(3分)(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )A.100° B.110° C.115° D.120°【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选B.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7.(3分)(2017•青岛)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为( )A. B. C. D.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐