高考数学专题13 统计概率专题(数学文化)(原卷版)

2023-11-14 · U1 上传 · 15页 · 719.5 K

专题13统计概率专题(数学文化)一、单选题1.(2021春·河北沧州·高一统考期末)洛书古称龟书,传说有神鱼出于洛水,其甲壳上有此图案,由表示1-9的圈点组成,数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,即九宫图,如图,在5个阳数中随机选取3个,则3个数的和为15的概率为(    )A. B. C. D.2.(2022秋·全国·高三兴国中学校联考阶段练习)我国古代学者余道安在他著的《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之”.哲学家王充在《论衡》中写道:“涛之起也,随月盛衰.”指出了潮汐跟月亮有关系.到了17世纪80年代,英国科学家牛顿发现了万有引力定律之后,提出了潮汐是由于月亮和太阳对海水的吸引力引起的假设,科学地解释了产生潮汐的原因.船只在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下图是某港口某天记录的时刻(x轴)与水深(y轴)关系的散点图,若某货船需要的安全水深为5米,则下列说法正确的是(    )A.该船在凌晨3点零6分驶入航道,靠近码头,9点18分返回海洋或15点30分驶入航道,靠近码头,21点42分返回海洋B.该船这一天能进入航道,靠近码头的时间可以是0时到凌晨6点12分或12时24分到18点36分C.海水涨落潮周期是12小时D.该船最多在码头停留时间不能超过6小时3.(2022·江西赣州·高三校考阶段练习)2022年是香港回归祖国25周年,香港是一座高度繁荣的国际大都市,有着东方之珠的美誉,同时香港的区徽也带上了香港特有的浪漫.香港特别行政区区徽,呈圆形,位于徽面内圆中央的动态紫荆花图案为白色,由五片花瓣组成,每片花瓣中均有一颗红色五角星及一条红色花蕊镶在其间,香港特别行政区区徽代表祖国,白色紫荆花代表香港,紫荆花红旗寓意香港是祖国不可分离的一部分,并将在祖国怀抱中兴旺发达.花蕊上的五星象征香港同胞热爱祖国,采用红、白不同颜色,象征“一国两制”.其中紫荆花外辅助圆直径为区徽直径的,现从区徽内任取一点,则该点取自紫荆花外辅助圆内的概率为(    )A. B. C. D.4.(2022春·新疆乌鲁木齐·高一乌鲁木齐101中学校考期末)概率论起源于16-17世纪对赌博问题的研究,概率的要义在17世纪中叶由法国数学家帕斯卡与费马的讨论才明确.当时有个叫梅罗骑士因赌注分配的问题写信求教于帕斯卡.背景:“甲乙两人赌注共有144收金,赌局分为五局三胜制,谁先赢得3局,即可获得全部赌注,现已知在甲获得2局胜乙获得1局胜利时,因某种原因赌局被中止了,给甲乙俩人怎样分配赌注才合理,已知甲乙每局获胜的概率均为0.5,且每局输赢相互独立.你认为乙应该获得多少妆金才合理(    )A.24 B.36 C.48 D.725.(2022·全国·高三专题练习)Poisson分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson分布的概率分布列为,其中为自然对数的底数,是Poisson分布的均值.当二项分布的n很大而p很小时,Poisson分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是(    )A. B. C. D.6.(2022春·广东茂名·高一统考期末)2021年是中国共产党成立100周年,为了庆祝建党100周年,激发青少年学生的爱国、爱党热情,引导青少年学生深入地了解党的光辉历史,加强爱国主义教育,甲、乙两所学校均计划于2021年7月组织师生参加“观看一部红色电影”活动.据了解,《1921》、《革命者》、《红船》、《三湾改编》等多部电影将陆续上映.甲、乙两校分别从这4部电影中任选一部电影观看,则甲、乙两校选择不同电影观看的概率是(    )A. B. C. D.7.(2022春·河南·高二统考期末)“霍姆斯马车理论”是指各种资源都得到最合理配置和使用的一种理论.一个富有效率的团队不需要每一个人都是最有能力的,而在于每个人的能力都能得到最合理的使用和发挥.某科研团队共有名研究人员,编号分别为,要均分成甲、乙两个科研小组,其中号研究员组合在一起,号研究员组合在一起,其余研究员随意搭配就能达到最佳效果,那么达到最佳效果的不同的分组方式共有(    ).A.种 B.种 C.种 D.种8.(2022春·江西宜春·高二统考期末)在数学史上记载了众多科学家根据生活中的一些数学问题制作了许多经典的数学模型,如研究随机现象规律的“高尔顿钉板”模型.某游乐场根据“高尔顿钉板”模型,仿作了一款如图的游戏机,玩家投入一枚游戏币后,机器从上方随机放下一颗半径适当的小球,假设小球从最上层3个缝隙落下的概率都相等,小球第一次与第2层的一障碍物随机(图中圆点)碰撞且碰撞下落过程中等可能地从左边或右边继续下落,于是又碰到下一层的一障碍物,如此继续下去,最后落入编号①,②,…,⑧的槽内.设小球落入编号②的槽内概率为,落入编号⑥的槽内概率为,则(    )A. B. C. D.,大小关系不定9.(2022·全国·高三专题练习)南丁格尔玫瑰图是由近代护理学和护士教育创始人南丁格尔(FlorenceNightingale1820-1910)设计的,图中每个扇形圆心角都是相等的,半径长短表示数量大小.某机构统计了近几年中国知识付费用户数量(单位:亿人次),并绘制成南丁格尔玫瑰图如下,根据此图,下列说法错误的是(    )A.2015年至2022年,知识付费用户数量逐年增加B.2016年至2022年,知识付费用户数量逐年增加量2018年最多C.2022年知识付费用户数量超过2015年知识付费用户数量的10倍D.2016年至2022年,知识付费用户数量的逐年增加量逐年递增10.(2021秋·山东临沂·高二统考开学考试)算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数含2个数字5”,则(    )A. B. C. D.11.(2022·高二课时练习)由于用具简单,趣味性强,象棋成为流行极为广泛的棋艺活动.某棋局的一部分如图所示,若不考虑这部分以外棋子的影响,且“马”和“炮”不动,“兵”只能往前走或左右走,每次只能走一格,从“兵”吃掉“马”的最短路线中随机选择一条路线,则能顺带吃掉“炮”的可能路线有(    )A.条 B.条 C.条 D.条12.(2022秋·山东济宁·高二校考阶段练习)据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如表示62,表示26,现有5根算筹,据此表示方式表示两位数(算筹不剩余且个位不为0),则这个两位数大于30的概率为(    )A. B. C. D.13.(2022秋·浙江·高二浙江省衢州第一中学校联考开学考试)魔方又叫鲁比克方块(Rubk'sCube),是由匈牙利建筑学教授暨雕塑家鲁比克・艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,现将三阶魔方中1面有色的小正方体称为中心方块,2面有色的小正方体称为边缘方块,3面有色的小正方体称为边角方块,若从所有的小正方体中任取一个,恰好抽到中心方块的概率为(    )A. B. C. D.14.(2022·全国·高三专题练习)“回文联”是对联中的一种,既可顺读,也可倒读.比如,一副描绘厦门鼓浪屿景色的回文联:雾锁山头山锁雾,天连水尾水连天.由此定义“回文数”,n为自然数,且n的各位数字反向排列所得自然数与n相等,这样的n称为“回文数”,如:1221,2413142.则所有5位数中是“回文数”且各位数字不全相同的共有(    )A.648个 B.720个 C.810个 D.891个15.(2022春·江苏扬州·高二统考期末)托马斯·贝叶斯(ThomasBayes)在研究“逆向概率”的问题中得到了一个公式:,这个公式被称为贝叶斯公式(贝叶斯定理),其中称为的全概率.假设甲袋中有3个白球和3个红球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为(    )A. B. C. D.16.(2023·全国·高三专题练习)花窗是一种在窗洞中用镂空图案进行装饰的建筑结构,这是中国古代建筑中常见的美化形式,既具备实用功能,又带有装饰效果.如图所示是一个花窗图案,点E,F,G,H分别为AB,BC,CD,DA上的三等分点;点P,M,N,O分别为EF,FG,GH,HE上的三等分点;同样,点Q,R,S,T分别为PM,MN,NO,OP上的三等分点.若在大正方形中随机取一点,则该点取自阴影部分的概率为(    )A. B. C. D.二、多选题17.(2022·全国·高三专题练习)端午节,又称端阳节、龙舟节、天中节等,与春节、清明节、中秋节并称为中国四大传统节日.扒龙舟与食粽是端午节的两大礼俗,这两大礼俗在中国自古传承,至今不辍.在一个袋中装有大小一样的个豆沙粽,个咸肉粽,现从中任取个粽子,设取出的个粽子中咸肉粽的个数为,则下列结论正确的是(    )A. B.随机变量服从二项分布C.随机变量服从超几何分布 D.18.(2022·全国·高三专题练习)“世界杂交水稻之父”袁隆平发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系.某水稻种植研究所调查某地杂交水稻的株高,得出株高(单位:cm)服从正态分布,其分布密度函数,,则(    )A.该地杂交水稻的平均株高为100cmB.该地杂交水稻株高的方差为10C.该地杂交水稻株高在120cm以上的数量和株高在80cm以下的数量一样多D.随机测量该地的一株杂交水稻,其株高在和在的概率一样大19.(2022秋·广东广州·高三广州市第十七中学校考阶段练习)为了解决传统的3D人脸识别方法中存在的问题,科学家提出了一种基于视频分块聚类的格拉斯曼流形自动识别系统.规定:某区域内的个点的深度的均值为,标准偏差为,深度的点视为孤立点.则根据下表中某区域内8个点的数据,下列结论正确的是(    )15.115.215.315.415.515.415.413.415.114.214.314.414.515.414.415.42012131516141218A. B. C.不是孤立点 D.是孤立点20.(2022·全国·高三专题练习)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.设圆柱的体积与球的体积之比为,圆柱的表面积与球的表面积之比为,若,则(    )A.的展开式中的常数项是B.的展开式中的各项系数之和为C.的展开式中的二项式系数最大值是D.,其中为虚数单位21.(2022·高二课时练习)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设为整数,若和被除得的余数相同,则称和对模同余,记为.若,,则的值可以是(    )A. B. C. D.22.(2022·全国·高三专题练习)根据中国古

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐