经典(超越)不等式一、结论(1)对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+lnx(x>0且x≠1)上述两个经典不等式的原型是来自于泰勒级数:2nθxxxxen+1e=1+x++⋯++x;2!n!(n+1)!23n+1xxnxn+1ln(1+x)=x-+-⋯+(-1)+o(x);23n+1截取片段:ex≥x+1(x∈R)ln(1+x)≤x(x>-1),当且仅当x=0时,等号成立;进而:lnx≤x-1(x>0)当且仅当x=1时,等号成立二、典型例题2-31(2023·陕西咸阳·校考模拟预测)已知a=,b=e5,c=ln5-ln4,则()5A.a>b>cB.a>c>bC.b>a>cD.b>c>a2(2023·全国·高三专题练习)已知函数f(x)=ex-x-1.(1)证明:f(x)≥0;111(2)证明:1+1+⋯1+
经典(超越)不等式(学生版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片