2009年高考真题数学【文】(山东卷)(含解析版)

2023-10-27 · U3 上传 · 13页 · 1.1 M

2009年普通高等学校招生全国统一考试(山东卷)文科数学一、选择题:本大题共12小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,,若,则的值为()A.0B.1C.2D.42.复数等于()A.B.C.D.3.将函数的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.B.C.D.4.一空间几何体的三视图如图所示,则该几何体的体积为().22侧(左)视图222正(主)视图A.B.C.D.俯视图5.在R上定义运算⊙:⊙,则满足⊙<0的实数的取值范().A.(0,2)B.(-2,1)C.D.(-1,2)1xy1OAxyO11BxyO11Cxy11DO6.函数的图像大致为().7.定义在R上的函数f(x)满足f(x)=,则f(3)的值为()ABCP第8题图A.-1B.-2C.1D.28.设P是△ABC所在平面内的一点,,则( )A.B.C.D.9.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为()A.B.C.D.11.在区间上随机取一个数x,的值介于0到之间的概率为().A.B.C.D.12.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则().A.B.开始S=0,T=0,n=0T>SS=S+5n=n+2T=T+n输出T结束是否C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分。13.在等差数列中,,则.14.若函数f(x)=a-x-a(a>0且a1)有两个零点,则实数a的取值范围是.15.执行右边的程序框图,输出的T=.16.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元.三、解答题:本大题共6小题,共74分。17.(本小题满分12分)设函数f(x)=2在处取最小值.求的值;在ABC中,分别是角A,B,C的对边,已知,求角C.18.(本小题满分12分)EABCFE1A1B1C1D1D如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分别是棱AD、AA的中点(Ⅰ)设F是棱AB的中点,证明:直线EE//平面FCC;(Ⅱ)证明:平面D1AC⊥平面BB1C1C.19.(本小题满分12分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.求z的值用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.20.(本小题满分12分)等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上(1)求r的值;(11)当b=2时,记求数列的前项和21.(本小题满分12分)已知函数,其中当满足什么条件时,取得极值?已知,且在区间上单调递增,试用表示出的取值范围.22.(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状;(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(10)12.【解析】:因为满足,所以,所以函数是以8为周期的周期函数,则,,,又因为在R上是奇函数,,得,,而由得,又因为在区间[0,2]上是增函数,所以,所以,即,故选D.【命题立意】:本题综合考查了函数的奇偶性、单调性、周期性等性质,运用化归的数学思想和数形结合的思想解答问题.13.【解析】:设等差数列的公差为,则由已知得解得,所以答案:13.【命题立意】:本题考查等差数列的通项公式以及基本计算.14.【解析】:设函数且和函数,则函数f(x)=a-x-a(a>0且a1)有两个零点,就是函数且与函数有两个交点,由图象可知当时两函数只有一个交点,不符合,当时,因为函数的图象过点(0,1),而直线所过的点(0,a)一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.15.【解析】:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30【命题立意】:本题主要考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束,本题中涉及到三个变量,注意每个变量的运行结果和执行情况.16.【解析】:设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,甲、乙两种设备生产A,B两类产品的情况为下表所示:产品设备A类产品(件)(≥50)B类产品(件)(≥140)租赁费(元)甲设备510200乙设备620300则满足的关系为即:,作出不等式表示的平面区域,当对应的直线过两直线的交点(4,5)时,目标函数取得最低为2300元.【命题立意】:本题是线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题17.解:(1)因为函数f(x)在处取最小值,所以,由诱导公式知,因为,所以.(2)由(1)知因为,且A为ABC的内角,所以.又因为所以由正弦定理,得,也就是,因为,所以或.当时,;当时,.综上所述,或【命题立意】:本题主要考查了三角函数中两角和差的弦函数公式、二倍角公式和三角函数的性质,并利用正弦定理解得三角形中的边角.注意本题中的两种情况都符合.18.EABCFE1A1B1C1D1DF1(Ⅰ)证明:在直四棱柱ABCD-ABCD中,取A1B1的中点F1,连接A1D,C1F1,CF1,因为AB=4,CD=2,且AB//CD,所以CDeq\o(=,\s\up8(//))A1F1,A1F1CD为平行四边形,所以CF1//A1D,又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,所以CF1//EE1,又因为平面FCC,平面FCC,所以直线EE//平面FCC.EABCFE1A1B1C1D1D(Ⅱ)连接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,所以CC1⊥AC,因为底面ABCD为等腰梯形,AB=4,BC=2,F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,,△ACF为等腰三角形,且所以AC⊥BC,又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC⊥平面BB1C1C,而平面D1AC,所以平面D1AC⊥平面BB1C1C.【命题立意】:本题主要考查直棱柱的概念、线面平行和线面垂直位置关系的判定.熟练掌握平行和垂直的判定定理.完成线线、线面位置关系的转化.19.解:(1).设该厂本月生产轿车为n辆,由题意得,,所以n=2000.z=2000-100-300-150-450-600=400(2)设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,则从中任取2辆的所有基本事件为(S1,B1),(S1,B2),(S1,B3)(S2,B1),(S2,B2),(S2,B3),((S1,S2),(B1,B2),(B2,B3),(B1,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S1,B1),(S1,B2),(S1,B3)(S2,B1),(S2,B2),(S2,B3),((S1,S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.【命题立意】:本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率问题.要读懂题意,

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐