2011年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为( )A.4℃ B.9℃ C.﹣1℃ D.﹣9℃2.(3分)如图,在4×4的正方形网格中,tanα=( )A.1 B.2 C. D.3.(3分)下列函数中,自变量x的取值范围为x<1的是( )A. B. C. D.4.(3分)如图,在正方体ABCD﹣A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是( )A. B. C. D.5.(3分)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是( )A.y=﹣(x+2)2 B.y=﹣x2+2 C.y=﹣(x﹣2)2 D.y=﹣x2﹣26.(3分)如图,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=( )A.40° B.60° C.70° D.80°7.(3分)如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点B'落在原三角板ABC的斜边AB上,则三角板A'B'C'平移的距离为( )A.6cm B.4cm C.(6﹣)cm D.()cm8.(3分)已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为( )A.x<﹣1 B.x>﹣1 C.x>1 D.x<19.(3分)如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G.下列结论:①tan∠HBE=cot∠HEB;②CG•BF=BC•CF;③BH=FG;④.其中正确的序号是( )A.①②③ B.②③④ C.①③④ D.①②④10.(3分)如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=( )A.8 B.6 C.4 D.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中的横线上.11.(3分)当x= 时,.12.(3分)体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为 .13.(3分)数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为 .14.(3分)如图是小强同学根据乐山城区某天上午和下午四个整时点的气温绘制成的折线图.请你回答:该天上午和下午的气温哪个更稳定?答: ;理由是 .15.(3分)若m为正实数,且m﹣=3,则m2﹣= .16.(3分)如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠An+1BnBn+1=θn,则(1)θ1= ;(2)θn= .三、本大题共3小题,每小题9分,共27分.17.(9分)计算:|﹣2|﹣+()﹣1+.18.(9分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.19.(9分)已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.四、本大题共3小题,每小题10分,共30分.20.(10分)如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF.求证:BE=CF.21.(10分)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400(1)若y与x满足初中学过的某一函数关系,求函数的解析式;(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费.则乙复印社每月收费y(元)与复印页数x(页)的函数关系为 ;(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?22.(10分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?五、本大题共2小题,每小题10分,共20分,其中第23题为选做题23.(10分)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:已知关于x的方程x2+2(a﹣1)x+a2﹣7a﹣4=0的两根为x1、x2,且满足x1x2﹣3x1﹣3x2﹣2=0.求的值.题乙:如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.(1)求证:AC⊥BD;(2)求△AOB的面积.我选做的是 题.24.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.六、本大题共2小题,第25题12分,第26题13分,共计25分25.(12分)如图(1),在直角△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).试探究线段EF与EG的数量关系.(1)如图(2),当m=1,n=1时,EF与EG的数量关系是 .证明:(2)如图(3),当m=1,n为任意实数时,EF与EG的数量关系是 .证明:(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是 .(写出关系式,不必证明)26.(13分)已知顶点为A(1,5)的抛物线y=ax2+bx+c经过点B(5,1).(1)求抛物线的解析式;(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的最小周长;(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P(x,y)(x>0)是直线y=x上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PQR.①当△PQR与直线CD有公共点时,求x的取值范围;②在①的条件下,记△PQR与△COD的公共部分的面积为S.求S关于x的函数关系式,并求S的最大值.2011年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.【分析】原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.【解答】解:﹣5+4=﹣1故选:C.【点评】本题主要考查从实际问题抽象出有理数的加法运算.2.【分析】求一个角的正切值,可将其转化到直角三角形中,利用直角三角函数关系解答.【解答】解:如图,在直角△ACB中,令AB=2,则BC=1;∴tanα===2;故选:B.【点评】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【分析】根据函数自变量的取值得到x<1的取值的选项即可.【解答】解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.【点评】考查函数自变量取值范围的应用;考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【分析】易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.【解答】解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(﹣2,0),设新抛物线的解析式为y=﹣(x﹣h)2+k,∴新抛物线解析式为y=﹣(x+2)2,故选:A.【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减.6.【分析】∠BOC与∠BDC为所对的圆心角与圆周角,根据圆周角定理可求∠BDC,由垂径定理可知AB⊥CD,在Rt△BDM中,由互余关系可求∠ABD.【解答】解:∵∠BOC与∠BDC为所对的圆心角与圆周角,∴∠BDC=∠BOC=20°,∵CD是⊙O的弦,直径AB过CD的中点M,∴AB⊥CD,∴在Rt△BDM中,∠ABD=90°﹣∠BDC=70°.故选:C.【点评】本题考查了垂径定理,圆周角定理的运用.关键是由圆周角定理得出∠BOC与∠BDC的关系.7.【分析】如图,过B′作B′D⊥AC,垂足为B′,则三角板A'B'C'平移的距离为B′D的长,根据AB′=AC﹣B′C,∠A=30°,在Rt△AB′D中,解直角三角形求B′D即可.【解答】解:如图,过B′作B′D⊥AC,垂足为B′,∵在Rt△ABC中,AB=12,∠A=30°,∴BC=AB=6,AC=AB•cos30°=6,由旋转的性质可知B′C=BC=6,∴AB′=AC﹣B′C=6﹣6,在Rt△AB′D中,∵∠A=30°,∴B′D=AB′•tan30°=(6﹣6)×=(6﹣2)cm.故选:C.【点评】本题考查了旋转的性质,30°直角三角形的性质,平移的问题.关键是找出表示平移长度的线段,把问题集中在小直角三角形中求解.8.【分析】根据一次函数y=ax+b的图象过第一、二、四象限,得到b>0,a<0,把(2,0)代入解析式y=ax+b求出=﹣2,解a(x﹣1)﹣b>0,得x﹣1<,代入即可求出答案.【解答】解:∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选:A.【点评】本题主要考查对一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等知识点的理解和掌握,能根据一次函数的性质得出a、b的正负,并正确地解不等式是解此题的关键.9.【分析】①根据正方形的性质求证△BHE为直角三角形即可得出结论;②由①求证△CGF∽△BCF.利用其对应边成比例即可求得结论;③由①求证△BHE≌△CGF即可得出结论,④利用相似三角形对应边成比例即可求得结论.【解答】解:①∵在正方形ABCD中,E、F分别是边BC、CD的中点,∴Rt△ABE≌Rt△BCF,∴∠BEA=∠CFB,∵CG∥AE,∴∠GCB=∠AEB∴∠CFG=∠GCB,∴∠CFG+∠GCF=90°即△CGF为直角三角形,∴CG∥AE交BF于点G,∴△BHE也为直角三角形,∴tan∠HBE=cot∠HEB;∴①正确.②由①可得△CGF∽△BCF,∴=,∴CG•BF=BC•CF,∴②正确;③由①得△BHE≌△CGF,∴BH=CG,而不是BH=FG∴③BH=FG错误;④∵△BCG∽△BFC,∴=,即BC2=BG•BF,同理可得△BCF∽△CGF,可得CF2=BF•GF,∴=,∴④正确,综上所述,正确的有①②④.故选:D.【点评】此题主要考查相似
2011年四川省乐山市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片