2010年四川省泸州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在5,,﹣1,0.001这四个数中,小于0的数是( )A.5 B. C.0.001 D.﹣12.(3分)如图,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角θ后与△AED重合,则θ的取值可能为( )A.90° B.60° C.45° D.30°3.(3分)据媒体报道,5月15日,参观上海世博会的人数突破330000,该数用科学记数法表示为( )A.33×104 B.3.3×105 C.0.33×106 D.3.3×1074.(3分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )A.学习水平一样 B.成绩虽然一样,但方差大的班学生学习潜力大 C.虽然平均成绩一样,但方差小的班学习成绩稳定 D.方差较小的学习成绩不稳定,忽高忽低5.(3分)计算(a4)2÷a2的结果是( )A.a2 B.a5 C.a6 D.a76.(3分)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形7.(3分)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.8.(3分)已知⊙O1与⊙O2的半径分别为2和3,若两圆相交,则两圆的圆心距m满足( )A.m=5 B.m=1 C.m>5 D.1<m<59.(3分)已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限10.(3分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )A. B. C. D.二、填空题(共9小题,每小题4分,满分36分)11.(4分)分解因式:3x2+6x+3= .12.(4分)在△ABC中,D、E分别是AB、AC的中点,DE=4,则BC= .13.(4分)在平面直角坐标系中,将二次函数y=(x﹣2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为 .14.(4分)如图,PA与⊙O相切于点A,PC经过⊙O的圆心且与该圆相交于两点B、C,若PA=4,PB=2,则sinP= .15.(4分)= .16.(4分)由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2400元的某款计算机,3年前的价格为 元.17.(4分)如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为 .18.(4分)已知一元二次方程x2﹣(+1)x+﹣1=0的两根为x1、x2,则= .19.(4分)在反比例函数y=(x>0)的图象上,有一系列点A1、A2、A3、…、An、An+1,若A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、An、An+1作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1= ,S1+S2+S3+…+Sn= .(用n的代数式表示).三、解答题(共9小题,满分84分)20.(8分)计算:(﹣1)2010+|﹣3|﹣+(cos60°)﹣1.21.(8分)化简:(1+)÷.22.(9分)2010年4月14日,青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表:捐款金额(元)510152050捐款人数(人)718123由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题:(1)九年级二班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?23.(9分)如图,已知AC∥DF,且BE=CF.(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是 ;(2)添加条件后,证明△ABC≌△DEF.24.(10分)如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)25.(10分)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.26.(10分)已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.(1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个都是黄色球的概率;(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多1,且从口袋中取出一个黄色球的概率为,请问小明又放入该口袋中红色球和黄色球各多少个?27.(10分)如图,在平行四边形ABCD中,E为BC边上一点,且AE与DE分别平分∠BAD和∠ADC.(1)求证:AE⊥DE;(2)设以AD为直径的半圆交AB于F,连接DF交AE于G,已知CD=5,AE=8,求的值.28.(10分)已知二次函数y1=x2﹣2x﹣3及一次函数y2=x+m.(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;(3)当0≤x≤2时,函数y=y1+y2+(m﹣2)x+3的图象与x轴有两个不同公共点,求m的取值范围.2010年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【分析】根据负数都小于0选择.【解答】解:小于0的数有﹣1.故选:D.【点评】本题主要考查了负数的概念.2.【分析】旋转中心为点A,B、D为对应点,可知∠BAD为旋转角.【解答】解:观察旋转中心,旋转方向,对应点可知,∠BAD为旋转角,根据正方形的性质可知,θ=∠BAD=90°.故选:A.【点评】本题关键是找出旋转中心、对应点、对应点与旋转中心连线的夹角等于旋转角.3.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.3,10的指数为6﹣1=5.【解答】解:330000=3.3×105.故选:B.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.4.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:A、学习水平不能只看平均成绩,故A错误;B、潜力的大小不能只看方差,和本人的智力有关,故B错误;C、方差越小,波动越小,越稳定,故C正确;D、方差越小,波动越小,越稳定,故D错误.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】根据幂的乘方和同底数幂的除法的运算法则计算后直接选取答案.【解答】解:(a4)2÷a2=a8÷a2=a6.故选:C.【点评】本题考查幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键.6.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【点评】本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.8.【分析】本题根据两圆半径之和与圆心距之间的数量关系和两圆位置关系的联系即可求解.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:∵两圆相交,∴3﹣2<m<3+2,即1<m<5.故选:D.【点评】此题主要是考查圆与圆的位置关系与数量关系间的联系.9.【分析】根据正比例函数的性质解答.【解答】解:根据题意,函数值随x的增大而增大,k值大于0,图象经过第一、三象限.故选:B.【点评】本题主要考查正比例函数的性质,当k>0时,函数图象经过第一三象限,y随x的增大而增大.10.【分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【解答】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.【点评】本题考核立意相对较新,考核了学生的空间想象能力.二、填空题(共9小题,每小题4分,满分36分)11.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2+6x+3,=3(x2+2x+1),=3(x+1)2.故答案为:3(x+1)2.【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】先根据题意画出图形,由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,根据三角形中位线定理解答即可.【解答】解:如图所示,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2DE=2×4=8.故答案为:8.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.13.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:二次函数y=(x﹣2)2+2的图象向左平移2个单位,得:y=(x﹣2+2)2+2=x2+2.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.【分析】连接OA,先利用勾股定理求出⊙O的半径长,再根据三角函数的定义解答即可.【解答】解:连接OA,设⊙O的半径为r,则OP=OB+BP=r+2,因为PA与⊙O相切于点A,所以OA⊥AP,根据勾股定理得,OP2=OA2+AP2,即(r+2)2=r2+42,解得,r=3,故sinP===.故答案为:.【点评】此题比较简单,解答此题的关键是连接OA,利用切线的性质构造出直角三角形,再根据三角函数的定义解答即可.15.【分析】利用=|a|,再根据绝对值的意义化简.【解答】解:=|﹣2|=2.故答案为:2.【点评】二次根
2010年四川省泸州市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片