2012年四川省泸州市中考数学试卷

2023-10-31 · U1 上传 · 25页 · 472 K

2012年四川省泸州市中考数学试卷一、选择题(每小题2分,共24分)1.(2分)﹣的相反数是( )A.5 B. C.﹣ D.﹣52.(2分)将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )A. B. C. D.3.(2分)“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨)4569户数(户)3421A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨4.(2分)计算2x3•x2的结果是( )A.2x B.2x5 C.2x6 D.x55.(2分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )A.24 B.16 C.4 D.26.(2分)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )A. B. C. D.7.(2分)如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( )A.50° B.60° C.70° D.80°8.(2分)若关于x的一元二次方程x2﹣4x+2k=0有两个实数根,则k的取值范围是( )A.k≥2 B.k≤2 C.k>﹣2 D.k<﹣29.(2分)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于( )A.13 B.11 C.11或13 D.12或1510.(2分)如图,边长为a的正方形ABCD绕点A逆时针旋转30°得到正方形A′B′C′D′,图中阴影部分的面积为( )A.a2 B.a2 C.(1﹣)a2 D.(1﹣)a211.(2分)如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为( )A.2 B.4 C.8 D.1612.(2分)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是( )A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)二、填空题(每小题3分,共15分)13.(3分)分解因式:x3﹣6x2+9x= .14.(3分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .15.(3分)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为 .16.(3分)有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于1的概率是 .17.(3分)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△Bn∁nMn的面积为Sn,则Sn= .(用含n的式子表示)三、(每小题5分,共15分)18.(5分)计算:(﹣1)2012×(3﹣π)0﹣+.19.(5分)先化简,再求值:÷(x﹣1﹣),其中x=.20.(5分)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.四、(每小题6分,共12分)21.(6分)某种子培育基地用A、B、C、D四种型号的小麦种子共2000粒进行发芽实验,将从中选出发芽率高的种子进行推广.通过实验可知,C型号种子的发芽率为95%,根据实验数据绘制了如下两幅尚不完整的统计图.(1)根据图甲求用于实验的D型号种子的粒数,并将图乙的统计图补充完整.(2)通过计算,回答应选哪一个型号的种子进行推广.22.(6分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)五、(每小题7分,共14分)23.(7分)“五一”节期间,小明和同学一起到游乐场游玩.如图为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?(2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?24.(7分)如图,一次函数y=ax+b的图象与y轴、x轴分别交于点A(0,)、B(3,0),与反比例函数y=的图象在第一象限交于C、D两点.(1)求该一次函数的解析式.(2)若AC•AD=,求k的值.六、(第25题9分,第26题11分,共20分)25.(9分)如图,△ABC内接于⊙O,AB是⊙O的直径,C是弧AD的中点,弦CE⊥AB于点H,连接AD,分别交CE、BC于点P、Q,连接BD.(1)求证:P是线段AQ的中点;(2)若⊙O的半径为5,AQ=,求弦CE的长.26.(11分)如图,二次函数y=﹣x2+mx+m+的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(1)当m=时,求tan∠ADH的值;(2)当60°≤∠ADB≤90°时,求m的变化范围;(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离. 2012年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)1.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【解答】解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:D.【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.3.【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【解答】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.4.【分析】根据同底数幂相乘,底数不变,指数相加解答.【解答】解:2x3•x2=2x5.故选:B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.5.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用.6.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.5x,当x>100时,y=100×0.5+0.8(x﹣100),=50+0.8x﹣80,=0.8x﹣30,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选:C.【点评】本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.7.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,然后由三角形的内角和定理,即可求得∠C的度数.【解答】解:∵∠BOD=100°,∴∠A=∠BOD=50°,∵∠B=60°,∴∠C=180°﹣∠A﹣∠B=70°.故选:C.【点评】此题考查了圆周角定理与三角形的内角和定理.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.8.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义可得到△≥0,即(﹣4)2﹣4×1×2k≥0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+2k=0有两个实数根,∴△≥0,即(﹣4)2﹣4×1×2k≥0,解得k≤2.∴k的取值范围是k≤2.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【解答】解:由方程x2﹣6x+8=0,得:解得x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为4+3+6=13.故选:A.【点评】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.10.【分析】设B′C′与CD交于点E.由于阴影部分的面积=S正方形ABCD﹣S四边形AB′ED,又S正方形ABCD=a2,所以关键是求S四边形AB′ED.为此,连接AE.根据HL易证△AB′E≌△ADE,得出∠B′AE=∠DAE=30°.在直角△ADE中,由正切的定义得出DE=AD•tan∠DAE=a.再利用三角形的面积公式求出S四边形AB′ED=2S△ADE.【解答】解:设B′C′与CD交于点E,连接AE.在△AB′E与△ADE中,∠AB′E=∠ADE=90°,,∴△AB′E≌△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD•tan∠DAE=a.∴S四边形AB′ED=2S△ADE=2××a×a=a2.∴阴影部分的面积=S正方形ABCD﹣S四边形AB′ED=(1﹣)a2.故选:D.【点评】本题主要考查了正方形、旋转的性质,直角三角形的判定及性质,图形的面积以及三角函数等知识,综合性较强,有一定难度.11.【分析】分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为△AMB的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OM•AM=ON•CN,得到OM=a,最后根据面积=3a•2b÷2=3ab=6求得ab=2从而求得k=a•2b=2ab=4.【解答】解:分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,∵点C为AB的中点,CN∥AM,∴CN为△AMB的中位线,∴MN=NB=a,C

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐