2016年辽宁省营口市中考数学试卷(空白卷)

2023-10-31 · U1 上传 · 7页 · 741.5 K

一、选择题1.的相反数是( )A.﹣8 B.8 C.﹣6 D.62.如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )A. B. C. D.3.若关于x的一元二次方程有实数根,则实数k的取值范围是( )A.k≥﹣1 B.k>﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠04.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为( )A.85° B.70° C.75° D.60°5.化简的结果为( )A.0 B.2 C. D.6.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为( )A.2 B.3 C. D.47.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是( )A.25000名学生是总体 B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体 D.以上调查是全面调查8.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是( )[来源:学#科#网Z#X#X#K]A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB9.已知一次函数y=(a+1)x+b的图象如图所示,那么a的取值范围是( )[来源:Z&xx&k.Com]A.a>1 B.a<﹣1 C.a>﹣1 D.a<010.如图,等腰直角三角形ABC的直角顶点C与平面直角坐标系的坐标原点O重合,AC,BC分别在坐标轴上,AC=BC=1,△ABC在x轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C第一次落在x轴正半轴上时,点A的对应点A1的横坐标是( )A.2 B.3 C. D.二、填空题11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35800000个,将35800000用科学记数法表示为.12.如图,AB是⊙O的直径,弦CD垂直平分OB,垂足为点E,连接OD、BC,若BC=1,则扇形OBD的面积为.13.已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是.14.若分式有意义,则a的取值范围是.15.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.16.如图,四边形ABCD为正方形,点A、B在y轴上,点C的坐标为(﹣3,1),反比例函数的图象经过点D,则k的值为.17.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.18.如图,二次函数(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=﹣1,点B的坐标为(1,0).下面的四个结论:①AB=4;②>0;③ab<0;④a﹣b+c<0,其中正确的结论是(填写序号).三、解答题[来源:Z.xx.k.Com]19.先化简,再求值:,其中x=.20.如图是一个转盘,转盘被平均分成4等份,即被分成4个大小相等的扇形,4个扇形分别标有数字1、2、3、4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).(1)图中标有“1”的扇形至少绕圆心旋转度能与标有“4”的扇形的起始位置重合;(2)现有一本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.21.学校为了了解全校1600名学生对“初中学生带手机上学”现象的看法,在全校随机抽取了若干名学生进行问卷调查.问卷给出了四种看法供学生选择,每人只能选一种,且不能不选.将调查结果整理后,绘制成如图①、图②所示的条形统计图与扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?[来源:Zxxk.Com](2)补全条形统计图和扇形统计图;(3)估计全校有多少名学生对“初中学生带手机上学”现象持“不赞同”的看法.22.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,.为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=20米.求斜坡BC的长是多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OE⊥AB交⊙O于点E,连接CA、CE、CB,过点A作AF⊥CE于点F,延长AF交BC于点P.(1)求证:CA=CP;(2)连接OF,若AC=,∠D=30°,求线段OF的长.24.谋划点准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?[来源:Zxxk.Com](2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?25.已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.26.如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan(α﹣β)=1,求点E的坐标;(3)如图②,在(2)的条件下,动点M从点C出发以每秒个单位的速度在直线BC上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐