2013年江苏省常州市中招考试数学试卷一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.在下列实数中,无理数是() A.2B.3.14C.D.2.如图所示圆柱的左视图是() A.B.C.D.3.下列函数中,图象经过点(1,﹣1)的反比例函数关系式是() A.B.C.D.4.下列计算中,正确的是() A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab5.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是() A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较6.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是() A.相离B.相切C.相交D.无法判断7.二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是() A.3B.2C.1D.08.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为() A.a+bB.2a+bC.3a+bD.a+2b二.填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分,)9.(4分)计算_______,_______,_________,_________.10.已知点P(3,2),则点P关于y轴的对称点P1的坐标是__________,点P关于原点O的对称点P2的坐标是__________.11.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=__________,b=__________.12.已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是__________cm,扇形的面积是__________cm2(结果保留π).13.函数中自变量x的取值范围是__________;若分式的值为0,则x=__________.14.我市某一周的每一天的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数是__________,众数是__________.15.已知x=-1是关于x的方程的一个根,则a=__________.16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=__________.17.在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=__________.三、解答题(本大题共2小题,共18分)18.(8分)化简(1)(4分)(2)(4分)19.(10分)解方程组和分式方程:(1)解方程组(5分)(2)(5分)解分式方程.四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20.(7分)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为__________.21.(8分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.五.解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22.(6分)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.23.(7分)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.六.解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24.(6分)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=__________,∠A′BC=__________,OA+OB+OC=__________.25.(7分)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?七.解答题(本大题共3小题,共25分,解答应写出文字说明,证明过程或演算步骤)26.(6分)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形181多边形273…………一般格点多边形abS则S与a、b之间的关系为S=__________(用含a、b的代数式表示).27.(9分)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为__________;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.28.(10分)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.江苏省常州市2013年中考数学试卷一.选择题(本大题共有8小题,每小题2分,共16分)1.(2分)(2013•常州)在下列实数中,无理数是( ) A.2B.3.14C.D.考点:无理数.分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解.解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C、﹣是有理数,故本选项错误;D、是无理数,故本选项正确.故选D.点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(2013•常州)如图所示圆柱的左视图是( ) A.B.C.D.考点:简单几何体的三视图8684分析:找到从左面看所得到的图形即可.解答:解:此圆柱的左视图是一个矩形,故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 3.(2分)(2013•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是( ) A.B.C.D.考点:反比例函数图象上点的坐标特征分析:设将点(1,﹣1)代入所设的反比例函数关系式y=(k≠0)即可求得k的值.解答:解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,解得,k=﹣1,所以,所求的函数关系式是y=﹣或.故选A.点评:本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式. 4.(2分)(2013•常州)下列计算中,正确的是( ) A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.解答:解:A、(a3b)2=a6b2,故本选项正确;B、a•a4=a5,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误.故选A.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键. 5.(2分)(2013•常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是( ) A.甲组数据比乙组数据的波动大 B.乙组数据的比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲组数据与乙组数据的波动不能比较考点:方差.3718684分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.解答:解:由题意得,方差<,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B.点评:本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波动性的大小,方差越大,波动性越大. 6.(2分)(2013•常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是( ) A.相离B.相切C.相交D.无法判断考点:直线与圆的位置关系.3718684分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为6,圆心O到直线l的距离为5,∵
2013年常州市中考数学试题及答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片