湖南省长沙市2014年中考数学试题及答案

2023-10-31 · U1 上传 · 17页 · 1.4 M

2014年湖南省长沙市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.的倒数是( )A.2 B.-2 C. D.-2.下列几何体中,主视图、左视图、俯视图完全相同的是( )A. 圆锥 B.六棱柱 C.球 D. 四棱锥3.(3分)(2014·长沙)一组数据3,3,4,2,8的中位数和平均数分别是( )A.3和3 B.3和4 C.4和3 D.4和44.(3分)(2014·长沙)平行四边形的对角线一定具有的性质是( )A.相等 B.互相平分 C.互相垂直 D.互相垂直且相等5.(3分)(2014·长沙)下列计算正确的是( )A. B. C. D.6.(3分)(2014·长沙)如图,、是线段上的两点,且是线段的中点,若,,则的长为( )A. B. C. D.7.(3分)(2014·长沙)一个关于的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A. B. C. D.8.(3分)(2014·长沙)如图,已知菱形的边长为2,,则对角线的长是( )A.1 B. C.2 D.9.(3分)(2014·长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )10.(3分)(2014·长沙)函数与在同一平面直角坐标系中的图象可能是( )二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014·长沙)如图,直线,直线分别与相交,若,则__________度.12.(3分)(201·长沙)抛物线的顶点坐标是__________.13.(3分)(2014·长沙)如图,、、是上的三点,,则__________度.14.(3分)(2014·长沙)已知关于的一元二次方程的一个根是1,则__________.15.(3分)(2014·长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是__________.16.(3分)(2014·长沙)如图,在中,,,的面积是8,则面积为__________.17.(3分)(2014·长沙)如图,点、、、在一条直线上,,,,,则__________.18.(3分)(2014·长沙)如图,在平面直角坐标系中,已知点,点,在轴上存在点到,两点的距离之和最小,则点的坐标是__________.三、解答题(共2小题,每小题6分,共12分)19.(6分)(2014·长沙)计算:.20.(6分)(2014·长沙)先简化,再求值:,其中.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2014·长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙-我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号、、、,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“”的概率.22.(8分)(2014·长沙)如图,四边形是矩形,把矩形沿对角线折叠,点落在点处,与相交于点.(1)求证:;(2)若,,求的面积.五、解答题(共2小题,每小题9分,共18分)23.(9分)(2014·长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?24.(9分)(2014·长沙)如图,以的一边为直径作,与边的交点恰好为的中点,过点作的切线交于点.(1)求证:;(2)若,求的值.六、解答题(共2小题,每小题10分,共20分)25.(10分)(2014·长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(-1,-1),(0,0),,…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点是反比例函数(为常数,)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数(,是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数(,是常数,)的图象上存在两个不同的“梦之点”,,且满足,,令,试求出的取值范围.26.(10分)(2014·长沙)如图,抛物线(,,是常数,)的对称轴为轴,且经过(0,0)和两点,点在该抛物线上运动,以点为圆心的总经过定点.(1)求,,的值;(2)求证:在点运动的过程中,始终与轴相交;(3)设与轴相交于,两点,当为等腰三角形时,求圆心的纵坐标.2014年湖南省长沙市中考数学试卷参考答案试题解析 一、选择题(共10小题,每小题3分,共30分)1.A考点:倒数.分析:根据乘积为的1两个数倒数,可得一个数的倒数.解答:解:的倒数是2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.C考点:简单几何体的三视图.分析:找到从物体正面、左面和上面看得到的图形全等的几何体即可.解答:解:A.圆锥的主视图、左视图、俯视图分别为等腰三角形,等腰三角形,圆及圆心,故A选项不符合题意;B.六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故B选项不符合题意;C.球的主视图、左视图、俯视图分别为三个全等的圆,故C选项符合题意;D.四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故D选项不符合题意;故选C.点评:考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3.B考点:中位数;算术平均数.分析:根据中位数及平均数的定义求解即可.解答:解:将数据从小到大排列为:2,3,3,4,8,则中位数是3,平均数.故选B.点评:本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4.B考点: 平行四边形的性质.分析: 根据平行四边形的对角线互相平分可得答案.解答:解:平行四边形的对角线互相平分,故选:B.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.D考点: 幂的乘方与积的乘方;实数的运算;合并同类项;同底数幂的乘法.分析: 根据二次根式的加减,可判断A,根据积的乘方,可判断B,根据合并同类项,可判断C,根据同底数幂的乘法,可判断D.解答:解:A.被开方数不能相加,故A错误;B.积的乘方等于每个因式分别乘方,再把所得的幂相乘,故B错误;C.系数相加字母部分不变,故C错误;D.底数不变指数相加,故D正确;故选:D.点评: 本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.6.B考点: 两点间的距离.分析: 由,,可求出,再由点是的中点,则可求得的长.解答:解:∵,,∴,又点是的中点,∴,答:的长为.故选:B.点评: 本题考查了两点间的距离,利用线段差及中点性质是解题的关键.7.C考点: 在数轴上表示不等式的解集.分析: 根据不等式组的解集是大于大的,可得答案.解答:解:一个关于的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是.故选:C.点评: 本题考查了不等式组的解集,不等式组的解集是大于大的.8.C考点: 菱形的性质.分析: 利用菱形的性质以及等边三角形的判定方法得出是等边三角形,进而得出的长.解答:解:∵菱形的边长为2,∴,又∵,∴是等边三角形,∴,则对角线的长是2.故选:C.点评: 此题主要考查了菱形的性质以及等边三角形的判定,得出是等边三角形是解题关键.9.A考点: 旋转对称图形.分析: 求出各旋转对称图形的最小旋转角度,继而可作出判断.解答:解:A.最小旋转角度;B.最小旋转角度;C.最小旋转角度;D.最小旋转角度;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.点评: 本题考查了旋转对称图形的知识,求出各图形的最小旋转角度是解题关键.10.D考点: 二次函数的图象;反比例函数的图象.分析: 分和两种情况,根据二次函数图象和反比例函数图象作出判断即可得解.解答:解:时,的函数图象位于第一三象限,的函数图象位于第一二象限且经过原点,时,的函数图象位于第二四象限,的函数图象位于第三四象限且经过原点,纵观各选项,只有D选项图形符合.故选D.点评: 本题考查了二次函数图象,反比例函数图象,熟记反比例函数图象与二次函数图象的性质是解题的关键,难点在于分情况讨论.二、填空题(共8小题,每小题3分,共24分)11.110考点: 平行线的性质;对顶角、邻补角.专题: 计算题.分析: 直线,直线分别与,相交,根据平行线的性质,以及对顶角的定义可求出.解答:解:∵,∴,∵,∴,∴.故填110.点评: 本题考查两直线平行,同位角相等及邻补角互补.12.(2,5)考点: 二次函数的性质.分析: 由于抛物线的顶点坐标为,由此即可求解.解答:解:∵抛物线,∴顶点坐标为:(2,5).故答案为:(2,5).点评: 此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的顶点坐标为.13.50考点: 圆周角定理.分析: 根据圆周角定理即可直接求解.解答:解:.故答案是:50.点评: 此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.2考点: 一元二次方程的解.分析: 把代入已知方程列出关于的一元一次方程,通过解方程求得的值.解答:解:依题意,得,即,解得,.故答案是:2.点评: 本题考查了一元二次方程的解的定义.此题是通过代入法列出关于的新方程,通过解新方程可以求得的值.15.考点: 概率公式.分析: 由100件外观相同的产品中有5件不合格,直接利用概率公式求解即可求得答案.解答:解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:.故答案为:.点评: 此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.18考点: 相似三角形的判定与性质.分析: 根据相似三角形的判定,可得,根据相似三角形的性质,可得答案.解答:解;∵在中,,∴.∵,∴,,∴,故答案为:18.点评: 本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质.17.6考点: 全等三角形的判定与性质.分析: 根据题中条件由可得,根据全等三角形的性质可得.解答:证明:∵,∴∵,∴,在和中,,∴,∴.故答案是:6.点评: 本题主要考查了全等三角形的判定及性质问题,应熟练掌握.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.(-1,0)考点: 轴对称-最短路线问题;坐标与图形性质.分析: 作关于轴的对称点,连接交轴于,则此时最小,求出的坐标,设直线的解析式是,把、的坐标代入求出、,得出直线的解析式,求出直线与轴的交点坐标即可.解答:解:作关于轴的对称点,连接交轴于,则此时最小,∵点的坐标为(2,3),点的坐标为(-2,1),∴C(2,-3),设直线的解析式是:,把、的坐标代入得:解得.即直线的解析式是,当时,,解得:,∴点的坐标是(-1,0).故答案为:(-1,0).点评: 本题考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,轴对称-最短路线问题的应用,关键是能找出点,题目具有一定的代表性,难度适

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐