2014年湖南省益阳市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 24页 · 410.9 K

2014年湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)四个实数﹣2,0,﹣,1中,最大的实数是( )A.﹣2 B.0 C.﹣ D.12.(4分)下列式子化简后的结果为x6的是( )A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x23.(4分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是( )A. B. C. D.4.(4分)下列图形,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.5.(4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( )A.m>1 B.m=1 C.m<1 D.m≤16.(4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于( )A.第一象限 B.第二象限 C.第三象限 D.第一、三象限7.(4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )A.AE=CF B.BE=FD C.BF=DE D.∠1=∠28.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.5二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)若x2﹣9=(x﹣3)(x+a),则a= .10.(4分)分式方程=的解为 .11.(4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 米.12.(4分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是 米/分钟.13.(4分)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是 .三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)计算:|﹣3|+30﹣.15.(6分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)先化简,再求值:(+2)(x﹣2)+(x﹣1)2,其中x=.17.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?18.(8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20.(10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.六、解答题(本题满分12分)21.(12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值. 2014年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)四个实数﹣2,0,﹣,1中,最大的实数是( )A.﹣2 B.0 C.﹣ D.1【考点】2A:实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)下列式子化简后的结果为x6的是( )A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x2【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的运算法则进行计算即可.【解答】解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项正确;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选:B.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.3.(4分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是( )A. B. C. D.【考点】X4:概率公式.【分析】由小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,直接利用概率公式求解即可求得答案.【解答】解:∵小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,∴她从中随机抽取1道,抽中数学题的概率是:=.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)下列图形,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( )A.m>1 B.m=1 C.m<1 D.m≤1【考点】AA:根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于( )A.第一象限 B.第二象限 C.第三象限 D.第一、三象限【考点】G8:反比例函数与一次函数的交点问题.【专题】11:计算题.【分析】根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.【解答】解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选:D.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.7.(4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2【考点】KB:全等三角形的判定;L5:平行四边形的性质.【专题】121:几何图形问题.【分析】利用平行四边形的性质以及全等三角形的判定分别分得出即可.【解答】解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.8.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.5【考点】D5:坐标与图形性质;MB:直线与圆的位置关系.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)若x2﹣9=(x﹣3)(x+a),则a= 3 .【考点】54:因式分解﹣运用公式法.【专题】11:计算题.【分析】直接利用平方差公式进行分解得出即可.【解答】解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.【点评】此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.10.(4分)分式方程=的解为 x=﹣9 .【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x=3x﹣9,解得:x=﹣9,经检验x=﹣9是分式方程的解.故答案为:x=﹣9.【点评】

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐