深圳市2011年初中毕业生学业考试数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。每小题给出的4个选项中,其中只有一个是正确的)1.的相反数等于()A.B.C.-2D.22.如图1所示的物体是一个几何体,其主视图是()A.B.C.D.图13.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×1054.下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2·x3=x6D.(x2)3=x65.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4B.4.5C.3D.26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()ABC图2A.B.C.D.图31236788.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字。如果同时转动两个转盘各一次(指针落在等分线上重转),当转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.9.已知a,b,c均为实数,若a>b,c≠0。下列结论不一定正确的是()A.B.C.D.10.对抛物线而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标为(1,-2)11.下列命题是真命题的个数有()①垂直于半径的直线是圆的切线;②平分弦的直径垂直于弦;③若是方程x-ay=3的一个解,则a=-1;④若反比例函数的图像上有两点(,y1),(1,y2),则y1深圳市2011年初中毕业生学业考试数学试卷·参考答案第一部分:选择题题号123456[]789101112答案BCBDAABCDDCA第二部分:填空题:13、a(a+1)(a-1)14、415、2+n16、解答题:17、原式18、解:方程两边同时乘以:(x+1)(x-1),得:人数100806040漫画科普常识其他种类小说02080406020图12x(x-1)+3(x+1)=2(x+1)(x-1)整理化简,得x=-5经检验,x=-5是原方程的根原方程的解为:x=-5(备注:本题必须验根,没有验根的扣2分)19、(1)200;(2)36;(3)如图1;(4)18020、(1)证明:如图2,连接AB、BC,∵点C是劣弧AB上的中点OAECBD图2∴∴CA=CB又∵CD=CA∴CB=CD=CA∴在△ABD中,∴∠ABD=90°∴∠ABE=90°∴AE是⊙O的直径(2)解:如图3,由(1)可知,AE是⊙O的直径OAECBD图3∴∠ACE=90°∵⊙O的半径为5,AC=4∴AE=10,⊙O的面积为25π在Rt△ACE中,∠ACE=90°,由勾股定理,得:∴S△ACE=∴S阴影=S⊙O-S△ACE=图4ABDCC′G21、(1)证明:如图4,由对折和图形的对称性可知,CD=C′D,∠C=∠C′=90°在矩形ABCD中,AB=CD,∠A=∠C=90°∴AB=C′D,∠A=∠C′在△ABG和△C′DG中,∵AB=C′D,∠A=∠C′,∠AGB=∠C′GD∴△ABG≌△C′DG(AAS)∴AG=C′G(2)解:如图5,设EM=x,AG=y,则有:G图5ABDCEC′NMC′G=y,DG=8-y,,在Rt△C′DG中,∠DC′G=90°,C′D=CD=6,∴C′G2+C′D2=DG2即:y2+62=(8-y)2解得:∴C′G=cm,DG=cm又∵△DME∽△DC′G∴,即:解得:,即:EM=(cm)∴所求的EM长为cm。22、解:(1)表2如右图所示,依题意,得:y=800x+700(18-x)+500(17-x)+600(x-3)即:y=200x+19300(3≤x≤17)(2)∵要使总运费不高于20200元∴200x+19300<20200解得:∵3≤x≤17,且设备台数x只能取正整数∴x只能取3或4。∴该公司的调配方案共有2种,具体如下表:甲地乙地A馆3台15台B馆14台0台甲地乙地A馆4台14台B馆13台1台表3表4(3)由(1)和(2)可知,总运费y为:y=200x+19300(x=3或x=4)由一次函数的性质,可知:当x=3时,总运费最小,最小值为:ymin=200×3+19300=19900(元)。答:当x为3时,总运费最小,最小值是19900元。出发地目的地甲地乙地A馆x(台)_______(台)B馆_______(台)_______(台)表218-x17-xx-323、解:(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:a(3-1)2+4=0解得:a=-1∴所求抛物线的解析式为:y=-(x-1)2+4(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线y=-(x-1)2+4,得EF图6ABxyODCQIGHPy=-(2-1)2+4=3∴点E坐标为(2,3)又∵抛物线y=-(x-1)2+4图像分别与x轴、y轴交于点A、B、D∴当y=0时,-(x-1)2+4=0,∴x=-1或x=3当x=0时,y=-1+4=3,∴点A(-1,0),点B(3,0),点D(0,3)又∵抛物线的对称轴为:直线x=1,∴点D与点E关于PQ对称,GD=GE…………………②分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=x+1∴当x=0时,y=1∴点F坐标为(0,1)∴………………………………………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴………④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(2,3)、I(0,-1)两点的函数解析式为:y=k1x+b1(k1≠0),分别将点E(2,3)、点I(0,-1)代入y=k1x+b1,得:解得:过A、E两点的一次函数解析式为:y=2x-1∴当x=1时,y=1;当y=0时,x=;∴点G坐标为(1,1),点H坐标为(,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI图7ABxyODCMTN由③和④,可知:DF+EI=∴四边形DFHG的周长最小为。(3)如图7,由题意可知,∠NMD=∠MDB,要使,△DNM∽△BMD,只要使即可,即:MD2=NM×BD…………………………⑤设点M的坐标为(a,0),由MN∥BD,可得△AMN∽△ABD,∴再由(1)、(2)可知,AM=1+a,BD=,AB=4∴∵MD2=OD2+OM2=a2+9,∴⑤式可写成:a2+9=×解得:a=或a=3(不合题意,舍去)∴点M的坐标为(,0)又∵点T在抛物线y=-(x-1)2+4图像上,∴当x=时,y=∴点T的坐标为(,)