二○二二年东营市初中学业水平考试数学试题(总分120分考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.-2的绝对值是()A.2 B. C. D.【答案】A【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A.2.下列运算结果正确的是()A. B. C. D.【答案】D【解析】【分析】根据合并同类项,完全平方公式,同底数幂除法和算术平方根的运算法则逐一进行判断即可.【详解】解:A.,原计算错误,不合题意;B.,原计算错误,不合题意;C.,原计算错误,不合题意;D.,原计算正确,符合题意;故选:D.【点睛】本题考查了合并同类项,完全平方公式,同底数幂除法和算术平方根,熟练掌握运算法则是解题的关键.3.如图,直线,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,,则()A. B. C. D.【答案】B【解析】【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∵∠1=40°,∴∠3=180°-∠1-∠ABC=50°,∵,∴∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.4.植树节当天,七年级1班植树300棵,正好占这批树苗总数的,七年级2班植树棵数是这批树苗总数的,则七年级2班植树的棵数是()A.36 B.60 C.100 D.180【答案】C【解析】【分析】设这批树苗一共有x棵,根据七年级1班植树300棵,正好占这批树苗总数的,列出方程求解即可.【详解】解:设这批树苗一共有x棵,由题意得:,解得,∴七年级2班植树的棵数是棵,故选C.【点睛】本题主要考查了一元一次方程的应用,正确理解题意列出方程是解题的关键.5.一元二次方程的解是()A. B.C. D.【答案】D【解析】【分析】利用配方法解方程即可.【详解】解:∵,∴,∴,∴,∴,解得,故选D.【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.6.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的定义,结合概率计算公式求解即可.【详解】解:如图所示,由轴对称图形的定义可知当选取编号为1,3,5,6其中一个白色区域涂黑后,能使黑色方块构成的图形是轴对称图形,∴任意将图中某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是,故选A.【点睛】本题主要考查了轴对称图形的定义,简单的概率计算,熟知轴对称图形的定义是解题的关键.7.如图,点D为边上任一点,交于点E,连接相交于点F,则下列等式中不成立的是()A. B. C. D.【答案】C【解析】【分析】根据平行线分线段成比例定理即可判断A,根据相似三角形的性质即可判断B、C、D.【详解】解:∵,∴,△DEF∽△CBF,△ADE∽△ABC,故A不符合题意;∴,,故B不符合题意,C符合题意;∴,故D不符合题意;故选C.【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,熟知相似三角形的性质与判定,平行线分线段成比例定理是解题的关键.8.如图,一次函数与反比例函数的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为,则不等式的解集是()A.或 B.或 C.或 D.【答案】A【解析】【分析】根据不等式的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.【详解】解:由题意得不等式的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式的解集为或,故选A.【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.9.用一张半圆形铁皮,围成一个底面半径为的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为()A. B. C. D.【答案】B【解析】【分析】设圆锥的母线长为l,根据圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)列式求解即可.【详解】解:设圆锥的母线长为l,由题意得:,∴,故选B.【点睛】本题主要考查了求圆锥的母线长,熟知圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)是解题的关键.10.如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是()①是等边三角形;②的最小值是;③当最小时;④当时,.A.①②③ B.①②④ C.①③④ D.①②③④【答案】D【解析】【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出,然后证,AM=AN,即可证出.②当MN最小值时,即AM为最小值,当时,AM值最小,利用勾股定理求出,即可得到MN的值.③当MN最小时,点M、N分别为BC、CD中点,利用三角形中位线定理得到,用勾股定理求出,,而菱形ABCD的面积为:,即可得到答案.④当时,可证,利用相似三角形对应边成比例可得,根据等量代换,最后得到答案.【详解】解:如图:在菱形ABCD中,AB=BC=AD=CD,,OA=OC,∵,∴,与为等边三角形,又,,∴,在与中∴,∴AM=AN,即为等边三角形,故①正确;∵,当MN最小值时,即AM为最小值,当时,AM值最小,∵,∴即,故②正确;当MN最小时,点M、N分别为BC、CD中点,∴,∴,在中,,∴,而菱形ABCD的面积为:,∴,故③正确,当时,∴∴∴∴故④正确;故选:D.【点睛】此题考查了菱形的性质与面积,等边三角形的判定与性质,全等三角形的判定,勾股定理,三角形中位线定理等相关内容,熟练掌握菱形的性质是解题关键.第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共23分.只要求填写最后结果.11.2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.【答案】【解析】【分析】科学记数法表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:6亿=.故答案为:.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.因式分解:______.【答案】【解析】【分析】利用提公因式法和公式法即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,熟练掌握提公因式法和平方差公式是解题的关键.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.作业时长(单位:分钟)5060708090人数(单位:人)14622【答案】70【解析】【分析】根据众数的定义,人数最多的即为这组数据的众数.【详解】解:由表可知:∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.【点睛】本题考查了众数的定义,掌握众数的定义是本题关键.14.如图,在中,弦半径,则的度数为____________.【答案】100°##100度【解析】【分析】先根据平行线的性质求出∠OCA的度数,再根据等边对等角求出∠OAC的度数,即可利用三角形内角和定理求出∠AOC的度数.【详解】解:∵,∴∠OCA=∠BOC=40°,∵OA=OC,∴∠OAC=∠OCA=40°,∴∠AOC=180°-∠OAC-∠OCA=100°,故答案为:100°.【点睛】本题主要考查了平行线的性质,圆的基本性质,三角形内角和定理,等腰三角形的性质,熟知相关知识是解题的关键.15.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是____________.【答案】且【解析】【分析】根据一元二次方程二次项系数不为0,以及根的判别式即可得出k的取值范围.【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴且,∴且,∴且.故答案为:且.【点睛】本题考查了根的判别式,一元二次方程的概念,熟练掌握一元二次方程的概念以及根的判别式是本题的关键.16.如图,是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数的图象上,则经过点A的反比例函数表达式为____________.【答案】【解析】【分析】如图所示,过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,证明△ACO≌△ODB得到AC=OD,OC=BD,设点B的坐标为(a,b),则点A的坐标为(-b,a),再由点B在反比例函数,推出,由此即可得到答案.【详解】解:如图所示,过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,则∠ACO=∠ODB=90°,由题意得OA=OB,∠AOB=90°,∴∠CAO+∠COA=∠AOC+∠BOD=90°,∴∠CAO=∠DOB,∴△ACO≌△ODB(AAS),∴AC=OD,OC=BD,设点B的坐标为(a,b),则AC=OD=a,OC=BD=b,∴点A的坐标为(-b,a),∵点B在反比例函数,∴,∴,∴,∴经过点A的反比例函数表达式为,故答案为:.【点睛】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.17.如图,在中,点F、G在上,点E、H分别在、上,四边形是矩形,是的高.,那么的长为____________.【答案】##4.8【解析】【分析】通过四边形EFGH为矩形推出,因此△AEH与△ABC两个三角形相似,将AM视为△AEH的高,可得出,再将数据代入即可得出答案.【详解】∵四边形EFGH是矩形,∴,∴,∵AM和AD分别是△AEH和△ABC的高,∴,∴,∵,代入可得:,解得,∴,故答案为:.【点睛】本题考查了相似三角形的判定和性质及矩形的性质,灵活运用相似三角形的性质是本题的关键.18.如图,是等边三角形,直线经过它们的顶点,点在x轴上,则点的横坐标是____________.【答案】【解析】【分析】如图,设直线与x轴交于点C,求出点A、C的坐标,可得OA=2,OC=,然后解直角三角形求出∠ACO=30°,可得,,然后求出,,,…,进而可得,再求出即可.【详解】解:如图,设直线与x轴交于点C,在中,当x=0时,y=2;当y=0时,即,解得:,∴A(0,2),C(,0),∴OA=2,OC=,∴tan∠ACO=,∴∠ACO=30°,∵是等边三角形,∴,∴,∴,∴AC=,∵AO⊥,∴,∴,同理可得:,,…,∴,∴,∴点的横坐标是,故答案为:.【点睛】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO=30°是解题的关键.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算及先化简,再求值:(1)(2),其中.【答案】(1)3(2),5【解析】【分析】(1)先根据特殊角的三角函数值计算,再根据二次根式的混合运算的法则进行计算即可.(2)根据分式的加法和除法可以化简题目中的式子,然后将x、y的值
精品解析:2022年山东省东营市中考数学真题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片