精品解析:2022年黑龙江省省龙东地区中考数学真题(解析版)

2023-10-31 · U1 上传 · 36页 · 1.2 M

黑龙江省龙东地区2022年初中毕业学业统一考试数学试题一、选择题(每题3分,满分30分)1.下列运算中,计算正确的是()A. B.C. D.【答案】C【解析】【分析】根据完全平方公式、同底数幂相乘除,积的乘方进行计算,即可判断.【详解】,故A选项错误,不符合题意;,故B选项错误,不符合题意;,故C选项正确,符合题意;,,故D选项错误,不符合题意;故选:C.【点睛】本题考查了完全平方公式、同底数幂相乘除,积的乘方,熟练掌握运算法则是解题的关键.2.下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形,∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C.【点睛】本题考查了了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合、中心对称图形即将图形绕某点旋转180°后与原图形完全重合,准确理解定义是解题的关键.3.学校举办跳绳比赛,九年(2)班参加比赛的6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是()A.181 B.175 C.176 D.175.5【答案】D【解析】【分析】先将这6个数从小到大进行排序,找出排在中间的两个数,求出这两个数的平均数,即为这组数据的中位数.【详解】解:将172,169,180,182,175,176从小到大进行排序为:169,172,175,176,180,182,排在中间的两个数为175,176,∴这6个数据的中位数为,故D正确.故选:D.【点睛】本题主要考查了求一组数据的中位数,解题的关键是将这组数据从小到大进行排序,找出排在中间的一个数或两个数,注意偶数个数是求中间两个数的平均数.4.如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7 B.8 C.9 D.10【答案】B【解析】【分析】这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,再相加即可.【详解】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,那么搭成这个几何体所需小正方体最多有个.故选:B.【点睛】本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8 B.10 C.7 D.9【答案】B【解析】【分析】设有x支队伍,根据题意,得,解方程即可.【详解】设有x支队伍,根据题意,得,解方程,得x1=10,x2=-9(舍去),故选B.【点睛】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是解题的关键.6.已知关于x的分式方程的解是正数,则m的取值范围是()A. B. C.且 D.且【答案】C【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到且,即可求解.【详解】方程两边同时乘以,得,解得,关于x的分式方程的解是正数,,且,即且,且,故选:C.【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键.7.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5 B.6 C.7 D.8【答案】A【解析】【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x支,围棋y副,根据题意得,15x+20y=360,即3x+4y=72,∴y=18-x.又∵x,y均为正整数,∴或或或或,∴班长有5种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.8.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数的图象上,顶点A在反比例函数的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2 B.1 C. D.【答案】D【解析】【分析】连接OA,设AB交y轴于点C,根据平行四边形的性质可得,AB∥OD,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA,设AB交y轴于点C,∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,∴,AB∥OD,∴AB⊥y轴,∵点B在反比例函数的图象上,顶点A在反比例函数的图象上,∴,∴,解得:.故选:D.【点睛】本题主要考查了平行四边形的性质,反比例函数比例系数的几何意义,熟练掌握平行四边形的性质,反比例函数比例系数的几何意义是解题的关键.9.如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是()A2.5 B.2 C.3.5 D.3【答案】A【解析】【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD⊥BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S△EGD=3,然后证△EGP≌△FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.【详解】解:如图,连接DE,取AD的中点G,连接EG,∵AB=AC,AD平分与BC相交于点D,∴AD⊥BC,BD=CD,∴S△ABD==12,∵E是AB的中点,∴S△AED==6,∵G是AD的中点,∴S△EGD==3,∵E是AB的中点,G是AD的中点,∴EGBC,EG=BD=CD,∴∠EGP=∠FDP=90°,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠FPD,∴△EGP≌△FDP(AAS),∴GP=PD=1.5,∴GD=3,∵S△EGD==3,即,∴EG=2,在Rt△EGP中,由勾股定理,得PE==2.5,故选:A.【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.10.如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①;②;③;④若,则;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是() A.①②④⑤ B.①②③⑤ C.①②③④ D.①③④⑤【答案】B【解析】【分析】分别对每个选项进行证明后进行判断:①通过证明得到EC=FD,再证明得到∠EAC=∠FBD,从而证明∠BPQ=∠AOQ=90°,即;②通过等弦对等角可证明;③通过正切定义得,利用合比性质变形得到,再通过证明得到,代入前式得,最后根据三角形面积公式得到,整体代入即可证得结论正确;④作EG⊥AC于点G可得EGBO,根据,设正方形边长为5a,分别求出EG、AC、CG的长,可求出,结论错误;⑤将四边形OECF的面积分割成两个三角形面积,利用,可证明S四边形OECF=S△COE+S△COF=S△DOF+S△COF=S△COD即可证明结论正确.【详解】①∵四边形ABCD是正方形,O是对角线AC、BD的交点,∴OC=OD,OC⊥OD,∠ODF=∠OCE=45°∵∴∠DOF+∠FOC=∠FOC+∠EOC=90°∴∠DOF=∠EOC在△DOF与△COE中∴∴EC=FD∵在△EAC与△FBD中∴∴∠EAC=∠FBD又∵∠BQP=∠AQO∴∠BPQ=∠AOQ=90°∴AE⊥BF所以①正确;②∵∠AOB=∠APB=90°∴点P、O在以AB为直径的圆上∴AO是该圆的弦∴所以②正确;③∵∴∴∴∴∵∴∴∴∴∵∴∴所以③正确;④作EG⊥AC于点G,则EGBO,∴设正方形边长为5a,则BC=5a,OB=OC=,若,则,∴∴∴∵EG⊥AC,∠ACB=45°,∴∠GEC=45°∴CG=EG=∴所以④错误;⑤∵,S四边形OECF=S△COE+S△COF∴S四边形OECF=S△DOF+S△COF=S△COD∵S△COD=∴S四边形OECF=所以⑤正确;综上,①②③⑤正确,④错误,故选B 【点睛】本题综合考查了三角形、正方形、圆和三角函数,熟练运用全等三角形、相似三角形、等弦对等角和三角函数的定义是解题的关键.二、填空题(每题3分,满分30分)11.我国南水北调东线北延工程2021-2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为________.【答案】【解析】【分析】把亿写成,最后统一写成的形式即可.【详解】解:由题意得:1.89亿=,故答案为:.【点睛】本题考查了科学记数法表示较大的数,移动小数点,熟记科学记数法的表示形式是解题的关键.12.函数中自变量的取值范围是______.【答案】【解析】【分析】根据二次根式的性质,被开方数大于等于0,即可求出答案.【详解】解:根据题意,,∴;故答案为:.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式被开方数大于等于0进行解题.13.如图,在四边形ABCD中,对角线AC,BD相交于点O,,请你添加一个条件________,使. 【答案】OB=OD(答案不唯一)【解析】【分析】根据SAS添加OB=OD即可【详解】解:添加OB=OD,在△AOB和△COD中,,∴(SAS)故答案为OB=OD(答案不唯一)【点睛】本题考查三角形全等判定添加条件,掌握三角形全等判定方法是解题关键.14.在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是________.【答案】【解析】【分析】利用概率公式计算即可.【详解】∵不透明的口袋中,有2个红球和4个白球,∴摸到红球的概率是,故答案为:.【点睛】本题考查了概率计算,熟练掌握概率计算公式是解题的关键.15.若关于x的一元一次不等式组的解集为,则a的取值范围是________.【答案】##【解析】【分析】先求出每个不等式的解集,根据已知不等式组的解集即可得出答案.【详解】解:,解不等式①得:,解不等式②得:,关于的不等式组的解集为,.故答案为:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.【答案】【解析】【分析】连接OA、OB,过点O作OD⊥AB于点D,由垂径定理和圆周角定理可得,,再根据等腰三角形的性质可得,利用含30°角的直角三角形的性质和勾股定理即可求解.【详解】解:连接OA、OB,过点O作OD⊥AB于点D, ,,,,,,,,,,故答案为:.【点睛】本题考查了垂径定理,圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质和勾股定理,熟练掌握知识点是解题的关键.17.若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为________cm.【答案】【解析】【分析】由于圆锥的母线长为5cm,侧面展开图是圆心角为 120°扇形,设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm,然后利用弧长公式即可得到关于r的方程,解方程即可求解.【详解】解:设圆锥底面半径为rcm,则圆锥底面周长为:cm,∴侧面展开图的弧长为:cm,∴,解得:r=,故答案:.【点睛】本题主要考查圆锥侧面展开图的知识;正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐