精品解析:2022年黑龙江省绥化市中考数学真题(解析版)

2023-10-31 · U1 上传 · 35页 · 1.7 M

二○二二年绥化市初中毕业学业考试数学试题一、单项选择题(本题共12个小题,每小题3分,共36分)1.化简,下列结果中,正确的是()A. B. C.2 D.-2【答案】A【解析】【分析】根据绝对值的运算法则,求出绝对值的值即可.【详解】解:故选:A.【点睛】本题考查根据绝对值的意义求一个数的绝对值,求一个数的绝对值:①当a是正数时,│a│=a;②当a是负数时,│a│=-a;③当a=0时,│0│=0.掌握求一个数的绝对值的方法是解答本题的关键.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.下列计算中,结果正确的是()A. B. C. D.【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项正确,符合题意;D.,故该选项不正确,不符合题意;故选:C.【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.4.下列图形中,正方体展开图错误的是() A. B. C. D.【答案】D【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.5.若式子在实数范围内有意义,则x的取值范围是()A. B. C.且 D.且【答案】C【解析】【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x+1≥0且x≠0,∴x≥-1且x≠0,故选:C.【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【答案】B【解析】【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B.如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D.直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.7.如图,线段在平面直角坐标系内,A点坐标为,线段绕原点O逆时针旋转90°,得到线段,则点的坐标为() A. B. C. D.【答案】A【解析】【分析】如图,逆时针旋转90°作出,过A作轴,垂足为B,过作轴,垂足为,证明,根据A点坐标为,写出,,则,,即可写出点A的坐标.【详解】解:如图,逆时针旋转90°作出,过A作轴,垂足为B,过作轴,垂足为, ∴,,∵,,∴,∴,∴,,∵A点坐标为,∴,,∴,,∴,故选:A.【点睛】本题考查旋转的性质,证明是解答本题的关键.8.学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是()A.该组数据的中位数为98 B.该组数据的方差为0.7C.该组数据的平均数为98 D.该组数据的众数为96和98【答案】D【解析】【分析】首先对数据进行重新排序,再根据众数,中位数,平均数,方差的定义进行求值计算即可.【详解】解:数据重新排列为:96,96,97,98,98,∴数据的中位数为:97,故A选项错误;该组数据的平均数为,故C选项错误;该组数据的方差为:,故B选项错误;该组数据的众数为:96和98,故D选项正确; 故选:D.【点睛】本题主要考查数据中名词的理解,掌握众数,中位数,平均数,方差的定义及计算方法是解题的关键.9.有一个容积为24的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x,由题意列方程,正确的是()A. B. C. D.【答案】A【解析】【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟,粗油管的注油速度为每分钟,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟,∴粗油管的注油速度为每分钟,∴.故选:A.【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.10.已知二次函数的部分函数图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的图象大致是()A. B.C. D.【答案】B【解析】【分析】根据的函数图象可知,,,即可确定一次函数图象,根据时,,即可判断反比例函数图象,即可求解.【详解】解:∵二次函数的图象开口向上,则,与轴存在2个交点,则,∴一次函数图象经过一、二、三象限,二次函数的图象,当时,,反比例函数图象经过一、三象限结合选项,一次函数与反比例函数在同一平面直角坐标系中的图象大致是B选项故选B【点睛】本题考查了一次函数,二次函数,反比例函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.11.小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为() A.2.7分钟 B.2.8分钟 C.3分钟 D.3.2分钟【答案】C【解析】【分析】先根据题意求得A、D、E、F的坐标,然后再运用待定系数法分别确定AE、AF、OD的解析式,再分别联立OD与AE和AF求得两次相遇的时间,最后作差即可.【详解】解:如图:根据题意可得A(8,a),D(12,a),E(4,0),F(12,0)设AE的解析式为y=kx+b,则,解得∴直线AE的解析式为y=x-3a同理:直线AF的解析式为:y=-x+3a,直线OD的解析式为:y=联立,解得联立,解得两人先后两次相遇的时间间隔为9-6=3min. 故答案为C.【点睛】本题主要考查了一次函数的应用,根据题意确定相关点的坐标、求出直线的解析式成为解答本题的关键.12.如图,在矩形中,P是边上的一个动点,连接,,过点B作射线,交线段的延长线于点E,交边于点M,且使得,如果,,,,其中.则下列结论中,正确的个数为()(1)y与x的关系式为;(2)当时,;(3)当时,.A.0个 B.1个 C.2个 D.3个【答案】C【解析】【分析】(1)证明,得,将,,代入,即可得y与x的关系式;(2)利用两组对应边成比例且夹角相等,判定;(3)过点M作垂足为F,在中,由勾股定理得BP的长,证明,求出,,BF的长,在中,求出的值即可.【详解】解:(1)∵在矩形中,∴,,,,∴,∵,∴,∴,∴,∵,,,∴,解得:,故(1)正确;(2)当时,,∴,又∵,∴,故(2)正确;(3)过点M作垂足为F,∴,∵当时,此时,,∴,在中,由勾股定理得:,∴,∵,∴,∴,∴,∴,,∴,∴故(3)不正确;故选:C.【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.二、填空题(本题共10个小题,每小题3分,共30分)13.一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为______个.【答案】15【解析】【分析】设黄球个数为x个,根据概率计算公式列出方程,解出x即可.【详解】解:设:黄球的个数为x个,解得:,检验:将代入,值不为零,∴是方程的解,∴黄球的个数为15个,故答案为:15.【点睛】本题考查概率计算公式,根据题意列出分式方程并检验是解答本题的关键.14.因式分解:________.【答案】【解析】【分析】将看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.15.不等式组的解集为,则m的取值范围为_______.【答案】m≤2【解析】【分析】先求出不等式①的解集,再根据已知条件判断m范围即可.【详解】解:,解①得:,又因为不等式组的解集为x>2∵x>m,∴m≤2,故答案为:m≤2.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m的范围是解此题的关键.16.已知圆锥的高为8,母线长为10,则其侧面展开图的面积为_______.【答案】60πcm2【解析】【分析】利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.【详解】解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,底面周长=12πcm, 侧面展开图的面积=×12π×10=60πcm2.故答案为:60πcm2.【点睛】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.17.设与为一元二次方程的两根,则的值为________.【答案】20【解析】【分析】利用公式法求得一元二次方程的根,再代入求值即可;【详解】解:∵△=9-4=5>0,∴,,∴=,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键.18.定义一种运算;,.例如:当,时,,则的值为_______.【答案】【解析】【分析】根据代入进行计算即可.【详解】解:====.故答案为:.【点睛】此题考查了公式的变化,以及锐角三角函数值的计算,掌握公式的转化是解题的关键.19.如图,正六边形和正五边形内接于,且有公共顶点A,则的度数为______度.【答案】12【解析】【分析】连接AO,求出正六边形和正五边形的中心角即可作答.【详解】连接AO,如图,∵多边形ABCDEF是正六边形,∴∠AOB=360°÷6=60°,∵多边形AHIJK是正五边形,∴∠AOH=360°÷5=72°,∴∠BOH=∠AOH-∠AOB=72°-60°=12°,故答案为:12.【点睛】本题考查了正多边形的中心角的知识,掌握正多边形中心角的计算方法是解答本题的关键.20.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.【答案】3##三【解析】【分析】设购买甲种奖品x件,乙种奖品y件,列出关系式,并求出,由于,且x,y都是正整数,所以y是4的整数倍,由此计算即可.【详解】解:设:购买甲种奖品x件,乙种奖品y件,,解得,∵,且x,y都是正整数,∴y是4的整数倍,∴时,,时,,时,,时,,不符合题意,故有3种购买方案,故答案为:3.【点睛】本题考查列关系式,根据题意判断出y是4的整数倍是解答本题的关键.21.如图,,

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐