精品解析:2022年湖北省武汉市中考数学真题(解析版)

2023-10-31 · U1 上传 · 29页 · 1.3 M

2022年武汉市初中毕业生学业考试数学试卷一、选择题1.2022的相反数是()A. B. C.−2022 D.2022【答案】C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件 B.确定性事件 C.不可能事件 D.随机事件【答案】D【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意;故选:D.【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.计算的结果是()A. B. C. D.【答案】B【解析】【分析】直接运用幂的乘方、积的乘方计算即可.【详解】解:.故答案为B.【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5.如图是由4个相同的小正方体组成的几何体,它的主视图是() A. B.C. D.【答案】A【解析】【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层左边是一个正方形.故选:A.【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.6.已知点,在反比例函数的图象上,且,则下列结论一定正确的是()A. B. C. D.【答案】C【解析】【分析】把点A和点B的坐标代入解析式,根据条件可判断出、的大小关系.【详解】解:∵点,)是反比例函数的图象时的两点,∴.∵,∴.故选:C.【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律如图所示(图中为一折线).这个容器的形状可能是()A B. C. D.【答案】A【解析】【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA段上升最慢,AB段上升较快,BC段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,∴题中图象所表示的容器应是下面最粗,中间其次,上面最细;故选:A.【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8.班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则,两位同学座位相邻的概率是()A. B. C. D.【答案】C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下: 由上表可知共有12中可能,满足题意的情况数为6种则,两位同学座位相邻的概率是.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.如图,在四边形材料中,,,,,.现用此材料截出一个面积最大的圆形模板,则此圆的半径是() A. B. C. D.【答案】B【解析】【分析】如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,∵,∠BAD=90°,∴△EAD∽△EBC,∠B=90°,∴,即,∴,∴EB=32cm,∴,设这个圆的圆心为O,与EB,BC,EC分别相切于F,G,H,∴OF=OG=OH,∵,∴,∴,∴,∴此圆的半径为8cm,故选B. 【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是()A.9 B.10 C.11 D.12【答案】D【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:x62022zynm根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x+y=3z-24=12故选:D.【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.二、填空题11.计算的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.【详解】解:.故答案为:2.【点睛】此题主要考查了二次根式的化简,注意:.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/销售量/双131042【答案】【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码的运动鞋销售量最多为双,即众数为.故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.13.计算:的结果是__.【答案】.【解析】【分析】【详解】原式.故答案为:.14.如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________. 【答案】【解析】【分析】如图所示:过点作于点,先求出,再根据勾股定理即可求出的长.【详解】如图所示:过点作于点,则∠BEC=∠DEC=90°,,,∴∠BCE=90°-30°=60°,又,,∴∠ECD=45°=∠D,∴,,,,即.故答案为:. 【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15.已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:①;②若,则;③若点,在抛物线上,,且,则;④当时,关于的一元二次方程必有两个不相等的实数根.其中正确的是_________(填写序号).【答案】①③④【解析】【分析】首先判断对称轴,再由抛物线的开口方向判断①;由抛物线经过A(-1,0),,当时,,求出,再代入判断②,抛物线,由点,在抛物线上,得,,把两个等式相减,整理得,通过判断,的符号判断③;将方程写成a(x-m)(x+1)-1=0,整理,得,再利用判别式即可判断④.【详解】解:抛物线过,两点,且,,,,即,抛物线开口向下,,,故①正确;若,则,,,故②不正确;抛物线,点,在抛物线上,∴,,把两个等式相减,整理得,,,,,,,故③正确;依题意,将方程写成a(x-m)(x+1)-1=0,整理,得,,,,,,,故④正确.综上所述,①③④正确.故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.16.如图,在中,,,分别以的三边为边向外作三个正方形,,,连接.过点作的垂线,垂足为,分别交,于点,.若,,则四边形的面积是_________.【答案】80【解析】【分析】连接LC、EC、EB,LJ,由平行线间同底的面积相等可以推导出:,由,可得,故,证得四边形是矩形,可得,在正方形中可得:,故得出:.由,可得,即可求出,可得出 【详解】连接LC、EC、EB,LJ,在正方形,,中.∵,∴,∴,∴,∴.∵,∴四边形是矩形,∴.∵,∴,∴,∵∴,∴.∵,∴.∴∴.∵.∴,∵∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,∴,∴.设,∵∴,∴,∴,∴∵,∴,∴,∴,∴.∴,∴.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.三、解答题17.解不等式组请按下列步骤完成解答.(1)解不等式①,得_________;(2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.【答案】(1)(2)(3)详见解析(4)【解析】【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集.【小问1详解】解:解不等式①,得【小问2详解】解:解不等式②,得【小问3详解】解:把不等式①和②的解集在数轴上表示出来:【小问4详解】解:由图可得,原不等式组的解集是:【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在四边形中,,. (1)求的度数;(2)平分交于点,.求证:.【答案】(1)(2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据平分,可得.再由,可得.即可求证.【小问1详解】解:∵,∴,∵,∴.小问2详解】证明:∵平分,∴.∵,∴.∵,∴.∴.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19.为庆祝中国共青团成立100周年,某校开展四项活动:项参观学习,项团史宣讲,项经典诵读,项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,项活动所在扇形的圆心角的大小是_________,条形统计图中项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【答案】(1)80,,20(2)大约有800人【解析】【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B项活动所在扇形的圆心角度数,从而求得C项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.【小问1详解】解:样本容量:16÷20%=80(人),B项活动所在扇形的圆心角:,C项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;【小问2详解】解:(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20.如图,以为直径的经过的顶点,,分别平分和,的延长线交于点,连接. (1)判断的形状,并证明你的结论;(2)若,,求的长.【答案】(1)为等腰直角三角形,详见解析(2)【解析】【分析】(1)由角平分线的定义、结合等量代换可得,即;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接,,,交于点.先说明垂直平分.进而求得BD、OD、OB的长,设,则.然后根据勾股定理

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐