浙江省宁波市2021年中考数学试卷(解析版)

2023-10-31 · U1 上传 · 26页 · 2.3 M

浙江省宁波市2021中考数学试卷试题卷Ⅰ一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.在﹣3,﹣1,0,2这四个数中,最小的数是( )A.﹣3 B.﹣1 C.0 D.2【答案】A【解析】【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.2.计算的结果是()A. B. C. D.【答案】D【解析】【分析】根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.3.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到的后面,所以【详解】解:故选:【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.4.如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A. B.C. D.【答案】C【解析】【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C.【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.5.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差(单位:环)如下表所示:甲乙丙丁98991.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁【答案】D【解析】【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S2丁<S2甲<S2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.要使分式有意义,x的取值应满足()A. B. C. D.【答案】B【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案.【详解】解:分式有意义,故选:【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键.7.如图,在中,于点D,.若E,F分别为,的中点,则的长为()A. B. C.1 D.【答案】C【解析】【分析】根据条件可知△ABD为等腰直角三角形,则BD=AD,△ADC是30°、60°的直角三角形,可求出AC长,再根据中位线定理可知EF=。【详解】解:因为AD垂直BC,则△ABD和△ACD都是直角三角形,又因为所以AD=,因为sin∠C=,所以AC=2,因为EF为△ABC的中位线,所以EF==1,故选:C.【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.8.我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为()A. B. C. D.【答案】A【解析】【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意,得:.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.如图,正比例函数的图象与反比例函数的图象相交于A,B两点,点B的横坐标为2,当时,x的取值范围是()A.或 B.或C.或 D.或【答案】C【解析】【分析】根据轴对称的性质得到点A的横坐标为-2,利用函数图象即可确定答案.【详解】解:∵正比例函数与反比例函数都关于原点对称,∴点A与点B关于原点对称,∵点B的横坐标为2,∴点A的横坐标为-2,由图象可知,当或时,正比例函数的图象在反比例函数的图象的上方,∴当或时,,故选:C.【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.10.如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.【答案】A【解析】【分析】根据△AED和△BCG是等腰直角三角形,四边形ABCD是平行四边形,四边形HEFG是矩形可得出AE=DE=BG=CG=a,HE=GF,GH=EF,点O是矩形HEFG的中心,设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c,过点O作OP⊥EF于点P,OQ⊥GF于点Q,可得出OP,OQ分别是△FHE和△EGF的中位线,从而可表示OP,OQ的长,再分别计算出,,进行判断即可【详解】解:由题意得,△AED和△BCG是等腰直角三角形,∴∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠ABC,∠BAD=∠DCB∴∠HDC=∠FBA,∠DCH=∠BAF,∴△AED≌△CGB,△CDH≌ABF∴AE=DE=BG=CG∵四边形HEFG是矩形∴GH=EF,HE=GF设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c过点O作OP⊥EF于点P,OQ⊥GF于点Q,∴OP//HE,OQ//EF∵点O是矩形HEFG的对角线交点,即HF和EG的中点,∴OP,OQ分别是△FHE和△EGF的中位线,∴,∵∵∴,即而,所以,,故选项A符合题意,∴,故选项B不符合题意,而于都不一定成立,故都不符合题意,故选:A【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系.试题卷Ⅱ二、填空题(每小题5分,共30分)11.的绝对值是__________.【答案】5【解析】【分析】根据绝对值的定义计算即可.【详解】解:|-5|=5,故答案为:5.【点睛】本题考查了绝对值定义,掌握知识点是解题关键.12.分解因式:_____________.【答案】x(x-3)【解析】【详解】直接提公因式x即可,即原式=x(x-3).13.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.【答案】【解析】【分析】用红球的个数除以球的总个数即可.【详解】解:从袋中任意摸出一个球有8种等可能结果,其中摸出的小球是红球的有3种结果,所以从袋中任意摸出一个球是红球概率为,故答案为:.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中的长为________.(结果保留)【答案】【解析】【分析】连接OC、OD,利用切线的性质得到,根据四边形的内角和求得,再利用弧长公式求得答案.【详解】连接OC、OD,∵分别与相切于点C,D,∴,∵,,∴,∴的长=(cm),故答案为:..【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.15.在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_________.【答案】或【解析】【分析】根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:①当点B在边DE上时;②当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可.【详解】解:根据题意,∵点称为点的“倒数点”,∴,,∴点B不可能在坐标轴上;∵点A在函数的图像上,设点A为,则点B为,∵点C为,∴,①当点B在边DE上时;点A与点B都在边DE上,∴点A与点B的纵坐标相同,即,解得:,经检验,是原分式方程的解;∴点B为,∴的面积为:;②当点B在边CD上时;点B与点C的横坐标相同,∴,解得:,经检验,是原分式方程的解;∴点B为,∴的面积为:;故答案为:或.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.16.如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为__________.【答案】①.2②.【解析】【分析】由与关于直线对称,矩形证明再证明可得再求解即可得的长;先证明可得:设则再列方程,求解即可得到答案.【详解】解:与关于直线对称,矩形矩形为的中点,如图,四边形都是矩形,设则解得:经检验:是原方程的根,但不合题意,舍去,故答案为:【点睛】本题考查是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,分式方程的解法,掌握以上知识是解题的关键.三、解答题(本大题有8小题,共80分)17.(1)计算:.(2)解不等式组:.【答案】(1);(2).【解析】【分析】(1)根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可;(2)先解出①,得到,再解出②,得到,由大小小大中间取得到解集.【详解】解:(1)原式.(2)解不等式①,得,解不等式②,得,所以原不等式组的解是.【点睛】本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变.18.如图是由边长为1的小正方形构成的的网格,点A,B均在格点上.(1)在图1中画出以为边且周长为无理数的,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以为对角线的正方形,且点E和点F均在格点上.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,只要使得AB的邻边AD的长是无理数即可;(2)如图,取格点E、F,连接EF,则EF与AB互相垂直平分且相等,根据正方形的判定方法,则四边形为所作.【详解】.解:(1)如图四边形即为所作,答案不唯一.(2)如图,四边形即为所求作正方形.【点睛】本题考查了在网格中作特殊四边形,熟练掌握平行四边形和正方形的判定方法是准确作图的关键.19.如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.【答案】(1);(2)【解析】【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;(2)由(1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则从而可得平移方式及平移后的解析式.【详解】解:(1).∵图象的对称轴为直线,∴,∴.(2)∵,∴二次函数的表达式为,∴抛物线向下平移3个单位

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐