2021年四川省巴中市中考数学试卷一、选择题1.下列各式的值最小的是( )A.20 B.|﹣2| C.2﹣1 D.﹣(﹣2)【答案】C【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【详解】解:20=1,|-2|=2,2-1=,-(-2)=2,∵<1<2,∴最小的是2-1.故选:C.【点睛】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数,正确化简各数是解题关键.2.某立体图形的表面展开图如图所示,这个立体图形是( )A. B. C. D.【答案】A【解析】【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A.【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.3.据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是( )A.337×108 B.3.37×1010 C.3.37×1011 D.0.337×1011【答案】B【解析】【分析】科学计数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:337亿=33700000000=.故选B.【点睛】本题主要考查了科学计数法,解题的关键在于能够熟练掌握科学计数法的定义.4.下列调查中最适合采用全面调查(普查)的是( )A.了解巴河被污染情况B.了解巴中市中小学生书面作业总量C.了解某班学生一分钟跳绳成绩D.调查一批灯泡的质量【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A.了解巴河被污染情况,适合抽样调查,故本选项不合题意;B.了解巴中市中小学生书面作业总量,适合抽样调查,故本选项不合题意;C.了解某班学生一分钟跳绳成绩,适合全面调查,故本选项符合题意;D.调查一批灯泡的质量,适合抽样调查,故本选项不合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,ABC中,点D、E分别在AB、AC上,且,下列结论正确的是( )A.DE:BC=1:2B.ADE与ABC面积比为1:3C.ADE与ABC的周长比为1:2DDEBC【答案】D【解析】【分析】根据相似三角形的判定与性质进行逐一判断即可.【详解】解:∵,∴AD:AB=AE:AC=1:3,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=1:3,故A错误;∵△ADE∽△ABC,∴△ADE与△ABC的面积比为1:9,周长的比为1:3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.故D正确.故选:D.【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.6.关于x的分式方程3=0有解,则实数m应满足的条件是( )A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2【答案】B【解析】【分析】解分式方程得:即,由题意可知,即可得到.【详解】解:方程两边同时乘以得:,∴,∵分式方程有解,∴,∴,∴,∴,故选B.【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.7.小风在1000米中长跑训练时,已跑路程x(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )A.小风的成绩是220秒B.小风最后冲刺阶段的速度是5米/秒C.小风第一阶段与最后冲刺阶段速度相等D.小风的平均速度是4米/秒【答案】D【解析】【分析】根据函数图像上的数据,求出相应阶段的速度即可得到正确的结论.【详解】解:A、由函数图像可知,小风到底终点的时间是220秒,故此选项正确;B、由函数图像可知,最后的冲刺时间是220-200=20秒,冲刺距离是1000-900=100米,即可得到冲刺速度是100÷20=5米/秒,故此选项正确;C、由函数图像可知一开始阶段20秒跑了100米,所以此时的速度是100÷20=5米/秒,故此选项正确;D、全程路程为1000米,时间为220秒,所以平均速度是1000÷220≠4米/秒,故此选项错误;故选D.【点睛】本题主要考查了从函数图像获取信息,正确地理解函数图像横纵坐标表示的意义是解题的关键.8.如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是( )A.sinB B.sinCC.tanB D.sin2B+sin2C=1【答案】A【解析】【分析】根据勾股定理得出AB,AC,BC的长,进而利用勾股定理的逆定理得出△ABC是直角三角形,进而解答即可.【详解】解:由勾股定理得:,∴△ABC是直角三角形,∠BAC=90°,∴,,,,只有A错误.故选择:A.【点睛】此题考查解直角三角形,关键是根据勾股定理得出AB,AC,BC的长解答.9.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )A. B. C. D.【答案】C【解析】【分析】连接OA,AC,OC,OC交AB于E,先根据垂径定理求出AE=3,然后证明三角形OAC是等边三角形,从而可以得到∠OAE=30°,再利用三线合一定理求解即可.【详解】解:如图所示,连接OA,AC,OC,OC交AB于E,∵C是弧AB的中点,AB=6,∴OC⊥AB,AE=BE=3,∵∠ADC=30°,∴∠AOC=2∠ADC=60°,又∵OA=OC,∴△OAC是等边三角形,∵OC⊥AB,∴,,∴∴∴圆心O到弦AB的距离为,故选C.【点睛】本题主要考查了圆周角与圆心角的关系,等边三角形的性质与判定,勾股定理,垂径定理,解题的关键在于能够熟练掌握相关知识进行求解.10.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202 D.以上都不对【答案】A【解析】【分析】点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,则,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,∴,∴(20−x)2=20x,故选:A.【点睛】本题考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.11.如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )A. B. C. D.【答案】D【解析】【分析】先根据四边形ABCD是矩形,C(-10,8),得出BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,再由折叠的性质得到CD=DE,BC=BE=10,∠DEB=∠C=90°,利用勾股定理先求出OE的长,即可得到AE,再利用勾股定理求出DE,利用求解即可.【详解】解:∵四边形ABCD是矩形,C(-10,8),∴BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,由折叠的性质可知:CD=DE,BC=BE=10,∠DEB=∠C=90°,在直角三角形BEO中:,∴,设,则在直角三角形ADE中:,∴,解得,∴,∵∠DEB=90°,∴,故选D.【点睛】本题主要考查了矩形的性质,折叠的性质,勾股定理,三角函数,解题的关键在于能够熟练掌握相关知识进行求解.12.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )x…﹣3﹣2﹣112…y…1.8753m1.8750…A.①④ B.②③ C.③④ D.②④【答案】B【解析】【分析】由表格可以得到二次函数图象经过点点(-3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a,b,c的值,依次代入到①②③④中进行判断即可解决.【详解】解:由表格可以得到,二次函数图象经过点和点,点与点是关于二次函数对称轴对称的,二次函数的对称轴为直线,设二次函数解析式为,代入点,得,,解得,二次函数的解析式为:,,,①是错误的,,②是正确的,方程为,即为,,,③是正确的,,④是错误的,②③是正确的,故选:B.【点睛】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.二、填空题13.函数y中自变量x的取值范围是___________.【答案】x≤2且x≠−3【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,2−x≥0且x+3≠0,解得x≤2且x≠−3.故答案为:x≤2且x≠−3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.关于x的方程2x2+mx﹣4=0的一根为x=1,则另一根为________.【答案】x2=-2【解析】【分析】设方程的另一根为x2,根据根与系数的关系可得x2=-2,解答出即可.【详解】解:设方程的另一根为x2,∵关于x的方程2x2+mx-4=0的一根为x=1,则1×x2==-2,解得x2=-2.故答案为:x2=-2.【点睛】本题主要考查了一元二次方程根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1•x2=.15.为优选品种,某农业科技小组对甲、乙两种杂交水稻进行种植对比试验研究,近五年来这两种杂交水稻的亩产量的平均数(单位:千克)及方差s2见表格.明年准备从中选出一种品质更优的杂交水稻进行种植,则应选的品种是_______.甲乙880880s221602500【答案】甲【解析】【分析】由表格可知两者的平均数相同,比较方差的大小即可.【详解】解:由表格可知甲、乙两种水稻的平均数相同,但是甲的方差小于乙的方差∴甲更稳定,∴应该选甲,故答案为:甲.【点睛】本题主要考查了利用方差作决策,解题的关键在于能够熟练掌握方差的定义.16.y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a=__________.【答案】5【解析】【分析】由f(x)=ax2+(a-5)x+1是偶函数,得a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1,解得a=5.【详解】解:∵f(x)=ax2+(a-5)x+1是偶函数,∴对于自变量取值范围内的任意一个x,都有f(-x)
四川省巴中市2021年中考数学真题试卷(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片