内蒙古赤峰市2021年中考数学真题(解析版)

2023-10-31 · U1 上传 · 33页 · 7.6 M

2021年内蒙古赤峰市中考数学试卷一、选择题(每小题出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑,每小题3分,共2分)1.-2021的相反数是()A.2021 B.-2021 C. D.【答案】A【解析】【分析】根据相反数的定义判断即可.【详解】解:-2021的相反数是2021,故选:A.【点睛】本题考查了相反数的概念,解题关键是明确相反数的定义,准确求解.2.截至北京时间2021年1月3日6时,我国执行首次火星探测任务的“天问一号”火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里,数据8300000用科学记数法表示为()A.8.3×105 B.8.3×106 C.83×105 D.0.83×107【答案】B【解析】【分析】直接利用科学记数法的定义及表示形式,其中,为整数求解即可.【详解】解:根据科学记数法的定义及表示形式,其中,为整数,则数据8300000用科学记数法表示为:,故选:B.【点睛】本题考查了科学记数法的表示方式,解题的关键是:掌握其定义和表达形式,根据题意确定的值.3.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.4.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.为了了解一批灯管的使用寿命,可以采用普查的方式进行C.一组数据2,5,4,5,6,7的众数、中位数和平均数都是5D.甲、乙两组队员身高数据的方差分别为,,那么乙组队员的身高比较整齐【答案】D【解析】【分析】根据事件发生的可能性的大小判断即可.【详解】解:A、“清明时节雨纷纷”是随机事件,故不符合题意;B、为了了解一批灯管的使用寿命,不宜采用普查的方式进行,应采用抽查的方式进行,故不符合题意;C、一组数据2,5,4,5,6,7的众数、中位数都是,平均数为,故选项错误,不符合题意;D、甲、乙两组队员身高数据的方差分别为,,,乙组队员的身高比较整齐,故选项正确,符合题意;故选:D.【点睛】本题考查了必然事件、随机事件、不可能事件、解题的关键是:理解几种事件的定义.5.下列计算正确的是()A. B.C. D.【答案】B【解析】【分析】根据去括号法则可判断A,根据合并同类项法则可判断B,根据乘法公式可判断C,利用单项式乘法法则与积的乘方法则可判断D.【详解】解:A.,故选项A去括号不正确,不符合题意;B.,故选项B合并同类项正确,符合题意;C.,故选项C公式展开不正确,不符合题意;D,故选项D单项式乘法计算不正确,不符合题意.故选择B.【点睛】本题考查去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法,掌握去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法是解题关键.6.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )A.85° B.75° C.60° D.30°【答案】B【解析】【详解】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7.实数a、b、c在数轴上对应点的位置如图所示.如果,那么下列结论正确的是()A. B. C. D.【答案】C【解析】【分析】根据a+b=0,确定原点的位置,根据实数与数轴即可解答.【详解】解:∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,,故选:C.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2400人【答案】D【解析】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【详解】解:A、本次抽样调查的样本容量是,正确,不符合题意;B、故扇形图中的m为10%,正确,不符合题意;C、若“五一”期间观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,正确,不符合题意;D、样本中选择公共交通出行的有5000×50%=2500人,错误,符合题意;故选:D.【点睛】本题考查了频数分布直方图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.9.一元二次方程,配方后可形为()A. B.C. D.【答案】A【解析】【分析】把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.10.如图,点C,D在以AB为直径的半圆上,,点E是上任意一点,连接BE,CE,则的度数为()A.20° B.30° C.40° D.60°【答案】B【解析】【分析】根据圆内接四边形的性质可得,连接AC,得,进一步得出,从而可得结论.【详解】解:连接AC,如图,∵A,B,C,D在以AB为直径的半圆上,∴∵∴∵AB为半圆的直径∴,∴∴故选:B.【点睛】此题主要考查了圆内接四边形的性质,圆周角定理等知识,正确作出辅助线构造直角三角形是解答此题的关键.11.点在函数的图象上,则代数式的值等于()A.5 B.-5 C.7 D.-6【答案】B【解析】【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式8a-2b+1的值.【详解】解:∵点P(a,b)在一次函数的图象上,∴b=4a+3,8a-2b+1=8a-2(4a+3)+1=-5,即代数式的值等于-5.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,熟知函数图象上的点的坐标满足图象的解析式是关键.12.已知抛物线上的部分点的横坐标x与纵坐标y的对应值如表:x…-10123…y…30-1m3…以下结论正确的是()A.抛物线的开口向下B.当时,y随x增大而增大C.方程的根为0和2D.当时,x的取值范围是【答案】C【解析】【分析】利用表中数据求出抛物线的解析式,根据解析式依次进行判断.【详解】解:将代入抛物线的解析式得;,解得:,所以抛物线的解析式为:,A、,抛物线开口向上,故选项错误,不符合题;B、抛物线的对称轴为直线,在时,y随x增大而增大,故选项错误,不符合题意;C、方程的根为0和2,故选项正确,符合题意;D、当时,x的取值范围是或,故选项错误,不符合题意;故选:C.【点睛】本题考查了二次函数的解析式的求法和函数的图象与性质,解题的关键是:利用待定系数法求出解析式,然后利用函数的图象及性质解答.13.一个几何体的三视图如图所示,则这个几何体的侧面积是()A. B. C. D.【答案】A【解析】【分析】根据三视图可知此几何体为圆锥,那么侧面积=底面周长母线2.【详解】解:此几何体为圆锥,圆锥母线长为9cm,直径为6cm,侧面积,故选:A.【点睛】本题考查由三视图判断几何体,圆锥的有关计算,熟知圆锥的侧面积公式是解题关键.14.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中甲、乙两人之间的距离(米)与乙出发的时间x(秒)之间的函数关系如图所示,正确的个数为()①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是;④乙到达终点时,甲距离终点还有68米.A.4 B.3 C.2 D.1【答案】B【解析】【分析】利用乙用80秒跑完400米求速度可判断①;利用甲先走3秒和12米求出甲速度,根据乙追甲相差12米求时间=12秒再求距起点的距离可判断②;利用两人间距离列不等式5(t-12)-4(t-12)32,和乙到终点,甲距终点列不等式4t+12400-32解不等式可判断③;根据乙到达终点时间,求甲距终点距离可判断④即可【详解】解:①∵乙用80秒跑完400米∴乙的速度为=5米/秒;故①正确;②∵乙出发时,甲先走12米,用3秒钟,∴甲的速度为米/秒,∴乙追上甲所用时间为t秒,5t-4t=12,∴t=12秒,∴12×5=60米,∴离开起点后,甲、乙两人第一次相遇时,距离起点60米;故②不正确;③甲乙两人之间的距离超过32米设时间为t秒,∴5(t-12)-4(t-12)32,∴t44,当乙到达终点停止运动后,4t+12400-32,∴t89,甲、乙两人之间的距离超过32米的时间范围是;故③正确;④乙到达终点时,甲距终点距离为:400-12-4×80=400-332=68米,甲距离终点还有68米.故④正确;正确的个数为3个.故选择B.【点睛】本题考查一次函数的图像应用问题,仔细阅读题目,认真观察图像,从图像中获取信息,掌握一次函数的图像应用,列不等式与解不等式,关键是抓住图像纵轴是表示两人之间的距离,横坐标表示乙出发时间,拐点的意义是解题关键.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)15.在函数中,自变量x取值范围是_____.【答案】x≥-1且x≠【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.详解】解:根据题意得:解得:x≥-1且x≠故答案为:x≥-1且x≠.【点睛】本题考查函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头处的高度为米,点A,D,B在同一直线上,则通道AB的长度为_________米.(结果保留整数,参考数据,,)【答案】438【解析】【分析】根据等腰直角三角形的性质求出,根据正切的定义求出,结合图形计算即可.【详解】解:由题意得,,在中,,(米),在中,,则(米),则(米),故答案是:.【点睛】本题查考了解直角三角形的应用——仰角俯角问题,解题的关键是:能借助构造的直角三角形求解.17.如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a为_________mm.【答案】【解析】【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【详解】解:如图,设正六边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=a,∠AOB=60°,∴cos∠BAC=,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∵AC=20mm

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐