四川省宜宾市2021年中考数学真题(原卷版)

2023-10-31 · U1 上传 · 6页 · 344 K

2021年四川省宜宾市中考数学试卷一、选择题;本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.﹣2的绝对值是()A.2 B. C. D.2.下列图形是轴对称图形的是()A. B. C. D.3.2021年宜宾市中考人数已突破64000人,数据64000用科学记数法表示为()A. B. C. D.4.若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.4 D.85.一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30° B.35° C.40° D.45°6.下列运算正确的是()A. B. C. D.7.下列说法正确的是()A.平行四边形是轴对称图形 B.平行四边形的邻边相等C.平行四边形对角线互相垂直 D.平行四边形的对角线互相平分8.若关于x的分式方程有增根,则m的值是()A.1 B.﹣1 C.2 D.﹣29.如图,在△ABC中,点O是角平分线AD、BE交点,若AB=AC=10,BC=12,则tan∠OBD的值是()A. B.2 C. D.10.若m、n是一元二次方程x2+3x﹣9=0的两个根,则的值是()A.4 B.5 C.6 D.1211.在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是()A.27 B.42 C.55 D.21012.如图,在矩形纸片ABCD中,点E、F分别在矩形边AB、AD上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A.2 B. C. D.3二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.13.不等式2x﹣1>1的解集是______.14.分解因式:______.15.从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是,你认为最适合参加决赛的选手是____(填“甲”或“乙”或“丙”).16.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.17.如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是______.18.如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论中,①点M、N的运动速度不相等;②存在某一时刻使;③逐渐减小;④.正确的是________.(写出所有正确结论的序号)三、解答题;本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)计算:;(2)化简:.20.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.21.为帮助学生养成热爱美、发现美艺术素养,某校开展了“一人一艺”的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).(1)张老师调查的学生人数是 .(2)若该校共有学生1000名,请估计有多少名学生选修泥塑;(3)现有4名学生,其中2人选修书法,1人选修绘画,1人选修摄影,张老师要从这4人中任选2人了解他们对艺术选修课的看法,请用画树状图或列表的方法,求所选2人都是选修书法的概率.22.全国历史文化名城宜宾有许多名胜古迹,始建于明朝白塔是其中之一.如图,为了测量白塔的高度AB,在C处测得塔顶A的仰角为45°,再向白塔方向前进15米到达D处,又测得塔顶A的仰角为60°,点B、D、C在同一水平线上,求白塔的高度AB.(≈1.7,精确到1米)23.如图,一次函数y=ax+b的图象与反比例函数的图象交于点A、B,与x轴交于点,若OC=AC,且=10(1)求反比例函数与一次函数的表达式;(2)请直接写出不等式ax+b>的解集.24.如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若tan∠ADC=,AC=2,求⊙O的半径;(3)如图2,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连结BE.求sin∠DBE的值.25.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐