2020年贵州省遵义市初中毕业生学业升学统一考试数学试题一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B【解析】试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为( )A.1.825×105 B.1.825×106 C.1.825×107 D.1.825×108【答案】A【解析】【分析】科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到1的后面,所以【详解】解:18.25万故选A.【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.3.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A.30° B.45° C.55° D.60°【答案】B【解析】【分析】根据平行线的性质即可得到结论.【详解】解:如图∵AB∥CD,∴∠1=∠D=45°,故选:B.【点睛】本题考查了平行线的性质以及直角三角板的各角度数,解答关键是根据利用平行线的性质找到相应角度之间的关系.4.下列计算正确的是( )A.x2+x=x3 B.(﹣3x)2=6x2C.8x4÷2x2=4x2 D.(x﹣2y)(x+2y)=x2﹣2y2【答案】C【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:x2+x不能合并,故选项A错误;,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.【点睛】本题考查的是合并同类项,积的乘方,同底数幂的除法,平方差公式,掌握以上知识是解题的关键.5.某校7名学生在某次测量体温(单位:℃)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是( )A.众数是36.5 B.中位数是36.7C.平均数是36.6 D.方差是0.4【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差即可得出答案.【详解】解:A、7个数中36.5出现了三次,次数最多,即众数为36.5,故符合题意;B、将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故不符合题意;C、平均数=×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故不符合题意;D、方差,故不符合题意.故选:A.【点睛】本题考查了数据分析,熟练掌握众数、中位数的概念及平均数和方差的计算方法是解题的关键.6.已知,是方程的两根,则的值为()A.5 B.10 C.11 D.13【答案】D【解析】【分析】先利用完全平方公式,得到,再利用一元二次方程根与系数关系:,即可求解.【详解】解:故选:D.【点睛】此题主要考查完全平方公式的应用和一元二次方程根与系数关系,灵活运用完全平方公式和一元二次方程根与系数关系是解题关键.7.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为( )A.(30﹣2x)(40﹣x)=600 B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600 D.(30﹣2x)(40﹣2x)=600【答案】D【解析】【分析】设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(40﹣2x)(30﹣2x)=600.故选:D.【点睛】本题考查的是一元二次方程的应用,正确理解题意找到等量关系是解题的关键.8.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A. B.C. D.【答案】C【解析】【分析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率的变化.问题便可解答.【详解】对于乌龟,其运动过程可分两段:从起点到终点乌龟没有停歇,其路程不断增加;最后同时到达终点,可排除B,D选项对于兔子,其运动过程可分三段:据此可排除A选项开始跑得快,所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快.故选:C【点睛】本题考查了函数图象的性质进行简单的合情推理,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.9.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为( )A. B. C.4 D.【答案】D【解析】【分析】利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高即可.【详解】解:记AC与BD的交点为,菱形,菱形的面积菱形的面积故选D.【点睛】本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为( )A. B.﹣1 C. D.【答案】B【解析】【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.【详解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.11.如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为( )A.9 B.12 C.15 D.18【答案】D【解析】【分析】由得到相似三角形,利用相似三角形的性质得到三角形之间的面积关系,利用反比例函数系数的几何意义可得答案.【详解】解:四边形MNQP的面积为3,故选D.【点睛】本题考查的是相似三角形的判定与性质,反比例函数系数的几何意义,掌握以上知识是解题的关键.12.抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有( )①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】①由对称轴即可判断;②将c≤3a转化为时所对应的函数值,由对称性转化为时所对应的函数值,即可判断;③根据图象所体现的最大值即可判断;④根据图象的最值结合对称轴即可判断.【详解】①因为对称轴为,所以,即,故①正确;②由①知,所以时,;因为抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,所以时,又因为与关于抛物线的对称轴对称,所以,即,故②错误;③由图可知y=ax2+bx+c的最大值为3,所以当ax2+bx+c=2时有两个不相等的实数根;故③正确;④由图可知:,即,又且,所以=,所以,即,故④正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系,熟知以上知识点的应用是解题的关键.二、填空题(本小题共4小题,每小题分,共16分,答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.计算的结果是______.【答案】【解析】【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】考点:二次根式的加减法.14.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为_____.【答案】x<4【解析】【分析】结合函数图象,写出直线在直线y=2下方所对应的自变量的范围即可.【详解】解:∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为:x<4.故答案为:x<4.【点睛】本题考查的是利用函数图像解不等式,理解函数图像上的点的纵坐标的大小对图像的影响是解题的关键.15.如图,对折矩形纸片使与重合,得到折痕,再把纸片展平.是上一点,将沿折叠,使点的对应点落在上.若,则的长是_________.【答案】【解析】【分析】在Rt△A´BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.【详解】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA′=60°,∴∠ABE=∠EBA′=30°,∴BE=.故答案为:.【点睛】本题考查了矩形与折叠,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.16.如图,是的外接圆,,于点,延长交于点,若,,则的长是_________.【答案】【解析】【分析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相似三角形的判定和性质可求DE.【详解】解:连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD−BF=,∴OG=,GD=,在Rt△AGO中,AG=,∴AD=AG+GD=,∵连接BE,AD与BE相交于D,∴∠BED=∠ACD,∠BDE=∠ADC,∴△BDE∽△ADC,∴.故答案为:.【点睛】考查了三角形的外接圆与外心,勾股定理,圆周角定理,等腰直角三角形的性质,相似三角形的判定和性质,解题的难点是求出AD的长.三、解答題(本共有8小题,共86分.答题请用黑色水笔或黑色签字笔书写在答题卡的相应位置上,解答时应写出必要的文字说明、证明过程或演算步骤)17.
精品解析:贵州省遵义市2020年初中毕业生学业升学统一考试数学试题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片