精品解析:广东省广州市2020年中考数学试题(解析版)

2023-10-31 · U1 上传 · 24页 · 2.3 M

2020年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A. B. C. D.【答案】C【解析】【分析】根据科学记数法的表示方法表示即可.【详解】15233000=,故选C.【点睛】本题考查科学记数法的表示,关键在于熟练掌握科学记数法的表示方法.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一 B.套餐二 C.套餐三 D.套餐四【答案】A【解析】【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.3.下列运算正确的是()A. B.C. D.【答案】D【解析】【分析】根据二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则依次判断即可得到答案.【详解】A、与不是同类二次根式,不能进行加法运算,故该选项错误;B、,故该选项错误;C、,故该选项错误;D、,故该选项正确,故选:D.【点睛】此题考查计算能力,正确掌握二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则是解题的关键.4.中,点分别是的边,的中点,连接,若,则()A. B. C. D.【答案】B【解析】【分析】根据点分别是的边,的中点,得到DE是的中位线,根据中位线的性质解答.【详解】如图,∵点分别是的边,的中点,∴DE是的中位线,∴DE∥BC,∴,故选:B.【点睛】此题考查三角形中位线的判定及性质,平行线的性质,熟记三角形的中位线的判定定理是解题的关键.5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【答案】A【解析】【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案.【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A正确,该圆锥的主视图是中心对称图形,故B错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D错误,故选A.【点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.6.一次函数的图象过点,,,则()A. B. C. D.【答案】B【解析】【分析】根据一次函数的图象分析增减性即可.【详解】因为一次函数的一次项系数小于0,所以y随x增减而减小.故选B.【点睛】本题考查一次函数图象增减性,关键在于分析一次项系数与零的关系.7.如图,中,,,,以点为圆心,为半径作,当时,与的位置关系是()A.相离 B.相切 C.相交 D.无法确定【答案】B【解析】【分析】根据中,,,求出AC的值,再根据勾股定理求出BC的值,比较BC与半径r的大小,即可得出与的位置关系.【详解】解:∵中,,,∴cosA=∵,∴AC=4∴BC=当时,与的位置关系是:相切故选:B【点睛】本题考查了由三角函数解直角三角形,勾股定理以及直线和圆的位置关系等知识,利用勾股定理解求出BC是解题的关键.8.往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()A. B. C. D.【答案】C【解析】【分析】过点O作OD⊥AB于D,交⊙O于E,连接OA,根据垂径定理即可求得AD的长,又由⊙O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长.【详解】解:过点O作OD⊥AB于D,交⊙O于E,连接OA,由垂径定理得:,∵⊙O的直径为,∴,在中,由勾股定理得:,∴,∴油的最大深度为,故选:.【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.9.直线不经过第二象限,则关于的方程实数解的个数是().A.0个 B.1个 C.2个 D.1个或2个【答案】D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】∵直线不经过第二象限,∴,∵方程,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.10.如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为()A. B. C. D.【答案】C【解析】【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明得到OE的长,再证明可得到EF的长,从而可得到结论.【详解】∵四边形ABCD是矩形,,,,,,,,,又,,,,,,,同理可证,,,,,,故选:C.【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知,则的补角等于________.【答案】80【解析】【分析】根据补角的概念计算即可.【详解】∠A的补角=180°-100°=80°,故答案为:80.【点睛】本题考查补角的概念,关键在于牢记基础知识.12.计算:__________.【答案】【解析】【分析】先化简二次根式,再进行合并即可求出答案.【详解】,故答案为:.【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.13.方程的解是_______.【答案】【解析】【分析】根据分式方程的解法步骤解出即可.【详解】左右同乘2(x+1)得:2x=3解得x=.经检验x=是方程的跟.故答案为:.【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.14.如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为9,则点的坐标为_______.【答案】(4,3)【解析】【分析】过点A作AH⊥x轴于点H,得到AH=3,根据平移的性质证明四边形ABDC是平行四边形,得到AC=BD,根据平行四边形的面积是9得到,求出BD即可得到答案.【详解】过点A作AH⊥x轴于点H,∵A(1,3),∴AH=3,由平移得AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴AC=BD,∵,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.15.如图,正方形中,绕点逆时针旋转到,,分别交对角线于点,若,则的值为_______.【答案】16【解析】【分析】根据正方形及旋转的性质可以证明,利用相似的性质即可得出答案.【详解】解:在正方形中,,∵绕点逆时针旋转到,∴,∴,∵,∴,∴,∴.故答案为:16.【点睛】本题考查了正方形的性质,旋转的性质,相似三角形的判定及性质,掌握正方形的性质,旋转的性质,相似三角形的判定及性质是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:)9.9,10.1,10.0,若用作为这条线段长度的近以值,当______时,最小.对另一条线段的长度进行了次测量,得到个结果(单位:),若用作为这条线段长度的近似值,当_____时,最小.【答案】(1).10.0;(2)..【解析】【分析】(1)把整理得:,设,利用二次函数性质求出当时有最小值;(2)把整理得:,设,利用二次函数的性质即可求出当取最小值时的值.【详解】解:(1)整理得:,设,由二次函数的性质可知:当时,函数有最小值,即:当时,的值最小,故答案为:10.0;(2)整理得:,设,由二次函数性质可知:当时,有最小值,即:当时,的值最小,故答案为:.【点睛】本题考查了二次函数模型的应用,关键是设,整理成二次函数,利用二次函数的性质—何时取最小值来解决即可.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:.【答案】x≥3【解析】【分析】根据解不等式组的解法步骤解出即可.【详解】由①可得x≥3由②可得x>2,∴不等式的解集为:x≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.18.如图,,,.求的度数.【答案】75°.【解析】【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC≌△ADC,即可得到答案.【详解】∵,,∴∠DCA=75°,∵,,AC=AC,∴△ABC≌△ADC,∴∠BCA=∠DCA=75°.【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.19.已知反比例函数的图象分别位于第二、第四象限,化简:.【答案】5【解析】【分析】由反比例函数图象的性质可得k<0,化简分式时注意去绝对值.【详解】由题意得k<0.【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【答案】(1)中位数是82,众数是85;(2).【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.【详解】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82,出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A、B、C、D,列树状图如下:共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB,BA,CD,DC,∴P(这2名老人恰好来自同一个社区)=.【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21.如图,平面直角坐标系中,的边在轴上,对角线,交于点,函数的图象经过点和点.(1)求的值和点的坐标;(2)求的周长.【答案】(1)k=12,M(6,2);(2)28【解析】【分析】(1)将点A(3,4)代入中求出k的值,作AD⊥x轴于点D,ME⊥x轴于点E,证明△MEC∽△ADC,得到,求出ME=2,代入即可求出点M的坐标;(2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.【详解】(1)将点A(3,4)代入中,得k=,∵四边形OABC是平行四边形,∴MA=MC,作AD⊥x轴于点D,ME⊥x轴于点E,∴ME∥AD,∴△MEC∽△ADC,∴,∴ME=2,将y=2代入中,得x=6,∴点M的坐标为(6,2);(2)∵A(3,4),∴OD=3,AD=4,∴,∵A(3,4),M(6,2),∴DE=6-3=3,∴CD=2DE=6,∴OC=3+6=9,∴的周长=2(OA+OC)=28.【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐