2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条 B.1条 C.2条 D.无数条2.墨迹覆盖了等式“()”中的运算符号,则覆盖的是()A.+ B.- C.× D.÷3.对于①,②,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A仅主视图不同 B.仅俯视图不同C.仅左视图不同 D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则()A.9 B.8 C.7 D.66.如图1,已知,用尺规作它角平分线.如图2,步骤如下,第一步:以为圆心,以为半径画弧,分别交射线,于点,;第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;第三步:画射线.射线即为所求.下列正确的是()A.,均无限制 B.,的长C.有最小限制,无限制 D.,的长7.若,则下列分式化简正确的是()A. B. C. D.8.在如图所示的网格中,以点为位似中心,四边形的位似图形是()A.四边形 B.四边形C.四边形 D.四边形9.若,则()A.12 B.10 C.8 D.610.如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点,处,而点转到了点处.∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是()A.嘉淇推理严谨,不必补充 B.应补充:且,C.应补充:且 D.应补充:且,11.若为正整数,则()A. B. C. D.12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是()A.从点向北偏西45°走到达B.公路的走向是南偏西45°C.公路的走向是北偏东45°D.从点向北走后,再向西走到达13.已知光速为300000千米秒,光经过秒()传播的距离用科学记数法表示为千米,则可能为()A.5 B.6 C.5或6 D.5或6或714.有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”,下列判断正确的是()A.淇淇说对,且的另一个值是115°B.淇淇说的不对,就得65°C.嘉嘉求的结果不对,应得50°D.两人都不对,应有3个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点个数为0;乙:若,则点的个数为1;丙:若,则点的个数为1.下列判断正确的是()A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:,则_________.18.正六边形的一个内角是正边形一个外角的4倍,则_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是25和-16,如图.如,第一次按键后,,两区分别显示:(1)从初始状态按2次后,分别求,两区显示的结果;(2)从初始状态按4次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.(1)①求证:;②写出∠1,∠2和三者间的数量关系,并说明理由.(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留).23.用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.(1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式;②为何值时,是的3倍?【注:(1)及(2)中的①不必写的取值范围】24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.-10-21(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值;(3)从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值.26.如图1和图2,中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.本试卷的题干、答案和解析均由组卷网(http://zujuan.xkw.com)专业教师团队编校出品。登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。试卷地址:HYPERLINKhttp://zujuan.xkw.com/qbm/paper/2509812982145024\o在浏览器中访问组卷网上的这份试卷\n在组卷网浏览本卷组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。钱老师 QQ:537008204 曹老师 QQ:713000635
精品解析:河北省2020年中考数学试题(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片