2015年吉林省长春市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 31页 · 444.6 K

2015年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣3的绝对值是( )A.3 B.﹣3 C. D.2.(3分)在长春市“暖房子工程”实施过程中,某工程队做了面积为632000m2的外墙保暖.632000这个数用科学记数法表示为( )A.63.2×104 B.6.32×105 C.0.632×106 D.0.632×1063.(3分)计算(a2)3的结果是( )A.3a2 B.a5 C.a6 D.a34.(3分)图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是( )A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同5.(3分)方程x2﹣2x+3=0的根的情况是( )A.有两个相等的实数根 B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根6.(3分)如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为( )A.30° B.40° C.50° D.70°7.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45° B.50° C.60° D.75°8.(3分)如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为( )A.﹣2 B.1 C. D.2 二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)比较大小: 1.(填“>”、“=”或“<”)10.(3分)不等式3x﹣12≥0的解集为 .11.(3分)如图,PA为⊙O的切线,A为切点,B是OP与⊙O的交点.若∠P=20°,OA=3,则的长为 (结果保留π)12.(3分)如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上.过点P分别作x轴、y轴的垂线,垂足分别为A、B,取线段OB的中点C,连结PC并延长交x轴于点D.则△APD的面积为 .13.(3分)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 .14.(3分)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为 . 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(x+1)2+x(x﹣2),其中x=.16.(6分)一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.18.(7分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.19.(7分)如图,海面上B、C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A、B两岛之间的距离.(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】20.(7分)在“世界家庭日”前夕,某校团委随机抽取了n名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查.问卷中的家庭活动方式包括:A.在家里聚餐;B.去影院看电影;C.到公园游玩;D.进行其他活动每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如图所示的统计图,根据统计图提供的信息,解答下列问题:(1)求n的值;(2)四种方式中最受学生喜欢的方式为 (用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为 .(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.21.(8分)甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y(个)与加工时间x(时)之间的函数图象分别为折线OA﹣AB与折线OC﹣CD.如图所示.(1)求甲机器改变工作效率前每小时加工零件的个数.(2)求乙机器改变工作效率后y与x之间的函数关系式.(3)求这批零件的总个数.22.(9分)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为 .探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.23.(10分)如图,在等边△ABC中,AB=6,AD⊥BC于点D.点P在边AB上运动,过点P作PE∥BC,与边AC交于点E,连结ED,以PE、ED为邻边作▱PEDF.设▱PEDF与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6).(1)求线段PE的长.(用含x的代数式表示)(2)当四边形PEDF为菱形时,求x的值.(3)求y与x之间的函数关系式.(4)设点A关于直线PE的对称点为点A′,当线段A′B的垂直平分线与直线AD相交时,设其交点为Q,当点P与点Q位于直线BC同侧(不包括点Q在直线BC上)时,直接写出x的取值范围.24.(12分)如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+4与x轴交于点A、B两点,与y轴交于点C,且点B的坐标为(3,0),点P在这条抛物线上,且不与B、C两点重合.过点P作y轴的垂线与射线BC交于点Q,以PQ为边作Rt△PQF,使∠PQF=90°,点F在点Q的下方,且QF=1.设线段PQ的长度为d,点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)求d与m之间的函数关系式.(3)当Rt△PQF的边PF被y轴平分时,求d的值.(4)以OB为边作等腰直角三角形OBD,当0<m<3时,直接写出点F落在△OBD的边上时m的值. 2015年吉林省长春市中考数学试卷参考答案与试题解析 一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣3的绝对值是( )A.3 B.﹣3 C. D.【考点】15:绝对值.菁优网版权所有【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)在长春市“暖房子工程”实施过程中,某工程队做了面积为632000m2的外墙保暖.632000这个数用科学记数法表示为( )A.63.2×104 B.6.32×105 C.0.632×106 D.0.632×106【考点】1I:科学记数法—表示较大的数.菁优网版权所有【分析】用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:632000=6.32×105,故选:B.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)计算(a2)3的结果是( )A.3a2 B.a5 C.a6 D.a3【考点】47:幂的乘方与积的乘方.菁优网版权所有【分析】根据幂的乘方计算即可.【解答】解:(a2)3=a6,故选:C.【点评】此题考查幂的乘方,关键是根据法则进行计算.4.(3分)图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是( )A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同【考点】U2:简单组合体的三视图.菁优网版权所有【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.5.(3分)方程x2﹣2x+3=0的根的情况是( )A.有两个相等的实数根 B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根【考点】AA:根的判别式.菁优网版权所有【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.(3分)如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为( )A.30° B.40° C.50° D.70°【考点】JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选:B.【点评】本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的应用,解此题的关键是求出∠C的度数和得出∠B=∠C,注意:三角形内角和等于180°,两直线平行,内错角相等.7.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45° B.50° C.60° D.75°【考点】L5:平行四边形的性质;M5:圆周角定理;M6:圆内接四边形的性质.菁优网版权所有【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.8.(3分)如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为( )A.﹣2 B.1 C. D.2【考点】F8:一次函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.菁优网版权所有【专题】16:压轴题.【分析】先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【解答】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐