专题07错位排列例1.“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相间,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为( )A.72 B.108 C.144 D.196例2.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )A.10种 B.20种 C.30种 D.60种例3.将编号为、、、、、的小球放入编号为、、、、、的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A. B. C. D.例4.同室4人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则4张贺卡不同分配方式有A.8种 B.9种 C.10种 D.12种例5.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有( )A.20 B.90 C.15 D.45例6.5个人站成一列,重新站队时各人都不站在原来的位置上,共有种不同的站法A.42 B.44 C.46 D.48例7.若5个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有( )A.45种 B.40种 C.55种 D.60种例8.若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的位置,则共有( )种不同的站法.A.4 B.8 C.12 D.24例9.有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为,已知当时,共有6种坐法.的值为________例10.将数字填入标号为的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有____________(用数字作答).例11.若4个人重新站成一排,没有人站在自己原来的位置,则不同的站法共有___________种.例12.位顾客将各自的帽子随意放在衣帽架上,然后,每人随意取走一顶帽子,则人拿的都不是自己的帽子方案总数为____________.(用数字作答)例13.名教师从星期一至星期六值日,若甲教师不排星期一,乙教师不排星期二,丙教师不排星期三,则不同的值日排法有多少种?例14.有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?例15.分别编有1,2,3,4,5号码的人与椅,其中号人不坐号椅,2,3,4,的不同坐法有多少种?例16.n个学生参加一次聚会,每人带一张贺卡和一件礼物,会后每个人任取一张贺卡和一件礼物.问:发生下列情况时,有多少种可能?(1)没有任何一位学生取回他原来自己的一件物品;(2)有人取回了他原来的物品;(3)恰好只有一人取回他原来的物品.例17.将用1~6编号的六张卡片,插入用1~6编号的六个盒子里,每只盒子插一张,求:(1)使每一卡片的号码与所在盒子号码都不同的插法总数;(2)恰好有3张卡片号码与所在盒子号码相同的插法总数.
高考数学专题07 错位排列(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片