专题16 导数中有关x与ex,lnx的组合函数问题在函数的综合问题中,常以x与ex,lnx组合的函数为基础来命题,将基本初等函数的概念、图象与性质糅合在一起,发挥导数的工具作用,应用导数研究函数性质、证明相关不等式(或比较大小)、求参数的取值范围(或最值).着眼于知识点的巧妙组合,注重对函数与方程、转化与化归、分类讨论和数形结合等思想的灵活运用,突出对数学思维能力和数学核心素养的考查.六大经典超越函数的图象函数f(x)=xexf(x)=eq\f(ex,x)f(x)=eq\f(x,ex)图象函数f(x)=xlnxf(x)=eq\f(lnx,x)f(x)=eq\f(x,lnx)图象考点一 x与lnx的组合函数问题(1)熟悉函数f(x)=h(x)lnx(h(x)=ax2+bx+c(a,b不能同时为0))的图象特征,做到对图(1)(2)中两个特殊函数的图象“有形可寻”.(2)熟悉函数f(x)=eq\f(lnx,h(x))(h(x)=ax2+bx+c(a,b不能同时为0),h(x)≠0)的图象特征,做到对图(3)(4)中两个特殊函数的图象“有形可寻”.【例题选讲】[例1] 设函数f(x)=xlnx-eq\f(ax2,2)+a-x(a∈R).(1)若函数f(x)有两个不同的极值点,求实数a的取值范围;(2)若a=2,k∈N,g(x)=2-2x-x2,且当x>2时不等式k(x-2)+g(x)<f(x)恒成立,试求k的最大值.分析 (1)将原问题转化为两个函数图象的交点问题,利用数形结合思想进行求解;(2)将不等式恒成立问题转化为函数的最值问题进行求解.解析 (1)由题意知,函数f(x)的定义域为(0,+∞),f′(x)=lnx+1-ax-1=lnx-ax,令f′(x)=0,可得a=eq\f(lnx,x),令h(x)=eq\f(lnx,x)(x>0),则由题可知直线y=a与函数h(x)的图象有两个不同的交点,h′(x)=eq\f(1-lnx,x2),令h′(x)=0,得x=e,可知h(x)在(0,e)上单调递增,在(e,+∞)上单调递减,h(x)max=h(e)=eq\f(1,e),当x→0时,h(x)→-∞,当x→+∞时,h(x)→0,故实数a的取值范围为eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e))).(2)当a=2时,f(x)=xlnx-x2+2-x,k(x-2)+g(x)<f(x),即k(x-2)+2-2x-x2<xlnx-x2+2-x,整理得k(x-2)<xlnx+x,因为x>2,所以k<eq\f(xlnx+x,x-2).设F(x)=eq\f(xlnx+x,x-2)(x>2),则F′(x)=eq\f(x-4-2lnx,(x-2)2).令m(x)=x-4-2lnx(x>2),则m′(x)=1-eq\f(2,x)>0,所以m(x)在(2,+∞)上单调递增,m(8)=4-2ln8<4-2lne2=4-4=0,m(10)=6-2ln10>6-2lne3=6-6=0,所以函数m(x)在(8,10)上有唯一的零点x0,即x0-4-2lnx0=0,故当2<x<x0时,m(x)<0,即F′(x)<0,当x>x0时,F′(x)>0,所以F(x)min=F(x0)=eq\f(x0lnx0+x0,x0-2)=eq\f(x0\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(x0-4,2))),x0-2)=eq\f(x0,2),所以k<eq\f(x0,2),因为x0∈(8,10),所以eq\f(x0,2)∈(4,5),故k的最大值为4.点评 1.极值点问题通常可转化为零点问题,且需要检验零点两侧导函数值的符号是否相反,若已知极值点求参数的取值范围,一定要对结果进行验证.解答任意性(恒成立)、存在性(有解)问题时通常有分离参变量、分拆函数等求解方法,可根据式子的结构特征,进行选择和调整,一般可转化为最值问题进行求解.2.对于有关x与lnx的组合函数为背景的试题,要求理解导数公式和导数的运算法则等基础知识,能够灵活利用导数研究函数的单调性,能够恰当地构造函数,并根据区间的不同进行分析、讨论,寻求合理的证明和解不等式的策略.【对点训练】1.若a=eq\f(ln2,2),b=eq\f(ln3,3),c=eq\f(ln6,6),则( )A.ab>0,ab=ba,有如下四个结论:(1)b
专题16 导数中有关x与ex,lnx的组合函数问题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片